Skip to content

TypeError: ('An update must have the same type as the original shared variable (shared_var=<TensorType(float32, matrix)>, shared_var.type=TensorType(float32, matrix), update_val=Elemwise{add,no_inplace}.0, update_val.type=TensorType(float64, matrix)).', 'If the difference is related to the broadcast pattern, you can call the tensor.unbroadcast(var, axis_to_unbroadcast[, ...]) function to remove broadcastable dimensions.') #13

@chandanmishra-03

Description

@chandanmishra-03
def adam(lr, tparams, grads, inp, cost):
gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) for k, p in tparams.iteritems()]
gsup = [(gs, g) for gs, g in zip(gshared, grads)]

f_grad_shared = theano.function(inp, cost, updates=gsup, profile=False)

b1 = 0.1
b2 = 0.001
e = 1e-8

updates = []

i = theano.shared(numpy.float32(0.))
i_t = i + 1.
fix1 = 1. - b1**(i_t)
fix2 = 1. - b2**(i_t)
lr_t = lr * (tensor.sqrt(fix2) / fix1)

for p, g in zip(tparams.values(), gshared):
    m = theano.shared(p.get_value() * 0.)
    v = theano.shared(p.get_value() * 0.)
    m_t = (b1 * g) + ((1. - b1) * m)
    v_t = (b2 * tensor.sqr(g)) + ((1. - b2) * v)
    g_t = m_t / (tensor.sqrt(v_t) + e)
    p_t = p - (lr_t * g_t)
    updates.append((m, m_t))
    updates.append((v, v_t))
    updates.append((p, p_t))
updates.append((i, i_t))


f_update = theano.function([lr], [], updates=updates, on_unused_input='raise', profile=False)

return f_grad_shared, f_update

getting the error in line "f_update = theano.function([lr], [], updates=updates, on_unused_input='raise', profile=False)". Help me to fix it.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions