|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +Check for duplicate or similar issues before creating a new one. |
| 4 | +
|
| 5 | +This script helps prevent duplicate GitHub issues by searching for similar |
| 6 | +existing issues based on title and keywords. |
| 7 | +""" |
| 8 | + |
| 9 | +import json |
| 10 | +import subprocess |
| 11 | +import sys |
| 12 | +from difflib import SequenceMatcher |
| 13 | +import re |
| 14 | +import argparse |
| 15 | + |
| 16 | + |
| 17 | +def run_gh_command(args): |
| 18 | + """Run a GitHub CLI command and return the output.""" |
| 19 | + try: |
| 20 | + result = subprocess.run( |
| 21 | + ["gh"] + args, capture_output=True, text=True, check=True |
| 22 | + ) |
| 23 | + return result.stdout |
| 24 | + except subprocess.CalledProcessError as e: |
| 25 | + print(f"Error running gh command: {e}") |
| 26 | + print(f"stderr: {e.stderr}") |
| 27 | + return None |
| 28 | + |
| 29 | + |
| 30 | +def get_all_issues(label="conductor:task", limit=200): |
| 31 | + """Get all issues with the specified label.""" |
| 32 | + # Get open issues |
| 33 | + open_issues = run_gh_command( |
| 34 | + [ |
| 35 | + "issue", |
| 36 | + "list", |
| 37 | + "--label", |
| 38 | + label, |
| 39 | + "--state", |
| 40 | + "open", |
| 41 | + "--limit", |
| 42 | + str(limit), |
| 43 | + "--json", |
| 44 | + "number,title,body,labels,state", |
| 45 | + ] |
| 46 | + ) |
| 47 | + |
| 48 | + # Get closed issues (last 50) |
| 49 | + closed_issues = run_gh_command( |
| 50 | + [ |
| 51 | + "issue", |
| 52 | + "list", |
| 53 | + "--label", |
| 54 | + label, |
| 55 | + "--state", |
| 56 | + "closed", |
| 57 | + "--limit", |
| 58 | + "50", |
| 59 | + "--json", |
| 60 | + "number,title,body,labels,state", |
| 61 | + ] |
| 62 | + ) |
| 63 | + |
| 64 | + all_issues = [] |
| 65 | + if open_issues: |
| 66 | + all_issues.extend(json.loads(open_issues)) |
| 67 | + if closed_issues: |
| 68 | + all_issues.extend(json.loads(closed_issues)) |
| 69 | + |
| 70 | + return all_issues |
| 71 | + |
| 72 | + |
| 73 | +def extract_keywords(text): |
| 74 | + """Extract meaningful keywords from text.""" |
| 75 | + # Remove common words and clean up |
| 76 | + stop_words = { |
| 77 | + "the", |
| 78 | + "a", |
| 79 | + "an", |
| 80 | + "and", |
| 81 | + "or", |
| 82 | + "but", |
| 83 | + "in", |
| 84 | + "on", |
| 85 | + "at", |
| 86 | + "to", |
| 87 | + "for", |
| 88 | + "of", |
| 89 | + "with", |
| 90 | + "by", |
| 91 | + "from", |
| 92 | + "up", |
| 93 | + "about", |
| 94 | + "into", |
| 95 | + "through", |
| 96 | + "during", |
| 97 | + "before", |
| 98 | + "after", |
| 99 | + "above", |
| 100 | + "below", |
| 101 | + "between", |
| 102 | + "under", |
| 103 | + "again", |
| 104 | + "further", |
| 105 | + "then", |
| 106 | + "once", |
| 107 | + "is", |
| 108 | + "are", |
| 109 | + "was", |
| 110 | + "were", |
| 111 | + "be", |
| 112 | + "been", |
| 113 | + "being", |
| 114 | + "have", |
| 115 | + "has", |
| 116 | + "had", |
| 117 | + "do", |
| 118 | + "does", |
| 119 | + "did", |
| 120 | + "will", |
| 121 | + "would", |
| 122 | + "could", |
| 123 | + "should", |
| 124 | + "may", |
| 125 | + "might", |
| 126 | + "must", |
| 127 | + "shall", |
| 128 | + "can", |
| 129 | + "need", |
| 130 | + } |
| 131 | + |
| 132 | + # Convert to lowercase and split |
| 133 | + words = re.findall(r"\b\w+\b", text.lower()) |
| 134 | + |
| 135 | + # Filter out stop words and short words |
| 136 | + keywords = [w for w in words if w not in stop_words and len(w) > 2] |
| 137 | + |
| 138 | + return set(keywords) |
| 139 | + |
| 140 | + |
| 141 | +def calculate_similarity(title1, title2, body1="", body2=""): |
| 142 | + """Calculate similarity between two issues.""" |
| 143 | + # Title similarity (weighted more heavily) |
| 144 | + title_ratio = SequenceMatcher(None, title1.lower(), title2.lower()).ratio() |
| 145 | + |
| 146 | + # Keyword overlap |
| 147 | + keywords1 = extract_keywords(f"{title1} {body1}") |
| 148 | + keywords2 = extract_keywords(f"{title2} {body2}") |
| 149 | + |
| 150 | + if keywords1 and keywords2: |
| 151 | + overlap = len(keywords1.intersection(keywords2)) |
| 152 | + total = len(keywords1.union(keywords2)) |
| 153 | + keyword_ratio = overlap / total if total > 0 else 0 |
| 154 | + else: |
| 155 | + keyword_ratio = 0 |
| 156 | + |
| 157 | + # Combined score (title is more important) |
| 158 | + combined_score = (title_ratio * 0.7) + (keyword_ratio * 0.3) |
| 159 | + |
| 160 | + return { |
| 161 | + "title_similarity": title_ratio, |
| 162 | + "keyword_overlap": keyword_ratio, |
| 163 | + "combined_score": combined_score, |
| 164 | + } |
| 165 | + |
| 166 | + |
| 167 | +def check_for_duplicates(new_title, new_body="", threshold=0.6): |
| 168 | + """Check if a similar issue already exists.""" |
| 169 | + print(f"🔍 Checking for duplicates of: '{new_title}'") |
| 170 | + print("=" * 80) |
| 171 | + |
| 172 | + # Get all existing issues |
| 173 | + issues = get_all_issues() |
| 174 | + |
| 175 | + if not issues: |
| 176 | + print("❌ Could not fetch issues from GitHub") |
| 177 | + return [] |
| 178 | + |
| 179 | + print(f"📊 Analyzing {len(issues)} existing issues...") |
| 180 | + |
| 181 | + # Find similar issues |
| 182 | + similar_issues = [] |
| 183 | + |
| 184 | + for issue in issues: |
| 185 | + similarity = calculate_similarity( |
| 186 | + new_title, issue["title"], new_body, issue.get("body", "") |
| 187 | + ) |
| 188 | + |
| 189 | + if similarity["combined_score"] >= threshold: |
| 190 | + similar_issues.append({"issue": issue, "similarity": similarity}) |
| 191 | + |
| 192 | + # Sort by similarity score |
| 193 | + similar_issues.sort(key=lambda x: x["similarity"]["combined_score"], reverse=True) |
| 194 | + |
| 195 | + return similar_issues |
| 196 | + |
| 197 | + |
| 198 | +def search_by_keywords(keywords): |
| 199 | + """Search for issues containing specific keywords.""" |
| 200 | + search_query = " OR ".join(keywords) |
| 201 | + |
| 202 | + result = run_gh_command( |
| 203 | + [ |
| 204 | + "issue", |
| 205 | + "list", |
| 206 | + "--search", |
| 207 | + search_query, |
| 208 | + "--state", |
| 209 | + "all", |
| 210 | + "--limit", |
| 211 | + "20", |
| 212 | + "--json", |
| 213 | + "number,title,state,labels", |
| 214 | + ] |
| 215 | + ) |
| 216 | + |
| 217 | + if result: |
| 218 | + return json.loads(result) |
| 219 | + return [] |
| 220 | + |
| 221 | + |
| 222 | +def main(): |
| 223 | + parser = argparse.ArgumentParser( |
| 224 | + description="Check for duplicate GitHub issues before creating a new one" |
| 225 | + ) |
| 226 | + parser.add_argument("title", help="Title of the issue you want to create") |
| 227 | + parser.add_argument( |
| 228 | + "--body", "-b", default="", help="Body/description of the issue" |
| 229 | + ) |
| 230 | + parser.add_argument( |
| 231 | + "--threshold", |
| 232 | + "-t", |
| 233 | + type=float, |
| 234 | + default=0.6, |
| 235 | + help="Similarity threshold (0.0-1.0, default: 0.6)", |
| 236 | + ) |
| 237 | + parser.add_argument( |
| 238 | + "--keywords", "-k", nargs="+", help="Additional keywords to search for" |
| 239 | + ) |
| 240 | + |
| 241 | + args = parser.parse_args() |
| 242 | + |
| 243 | + # Check for duplicates |
| 244 | + similar_issues = check_for_duplicates(args.title, args.body, args.threshold) |
| 245 | + |
| 246 | + if similar_issues: |
| 247 | + print("\n⚠️ Found potentially similar issues:") |
| 248 | + print("-" * 80) |
| 249 | + |
| 250 | + for item in similar_issues: |
| 251 | + issue = item["issue"] |
| 252 | + sim = item["similarity"] |
| 253 | + |
| 254 | + state_icon = "🟢" if issue["state"] == "OPEN" else "🔴" |
| 255 | + print(f"\n{state_icon} #{issue['number']}: {issue['title']}") |
| 256 | + print( |
| 257 | + f" Similarity: {sim['combined_score']:.1%} " |
| 258 | + + f"(title: {sim['title_similarity']:.1%}, " |
| 259 | + + f"keywords: {sim['keyword_overlap']:.1%})" |
| 260 | + ) |
| 261 | + |
| 262 | + # Show labels |
| 263 | + labels = [label["name"] for label in issue.get("labels", [])] |
| 264 | + if labels: |
| 265 | + print(f" Labels: {', '.join(labels)}") |
| 266 | + |
| 267 | + # Also search by keywords if provided |
| 268 | + if args.keywords: |
| 269 | + print(f"\n🔍 Searching for issues with keywords: {', '.join(args.keywords)}") |
| 270 | + keyword_results = search_by_keywords(args.keywords) |
| 271 | + |
| 272 | + if keyword_results: |
| 273 | + print(f"\nFound {len(keyword_results)} issues with matching keywords:") |
| 274 | + for issue in keyword_results[:5]: # Show top 5 |
| 275 | + state_icon = "🟢" if issue["state"] == "OPEN" else "🔴" |
| 276 | + print(f"{state_icon} #{issue['number']}: {issue['title']}") |
| 277 | + |
| 278 | + # Recommendation |
| 279 | + if similar_issues: |
| 280 | + highest_score = similar_issues[0]["similarity"]["combined_score"] |
| 281 | + if highest_score >= 0.8: |
| 282 | + print( |
| 283 | + "\n❌ RECOMMENDATION: Do NOT create this issue - very similar issue exists!" |
| 284 | + ) |
| 285 | + print(" Consider adding to the existing issue instead.") |
| 286 | + return 1 |
| 287 | + elif highest_score >= 0.6: |
| 288 | + print( |
| 289 | + "\n⚠️ RECOMMENDATION: Review similar issues carefully before creating." |
| 290 | + ) |
| 291 | + print(" Your issue might be a duplicate or subset of an existing one.") |
| 292 | + return 2 |
| 293 | + else: |
| 294 | + print("\n✅ No similar issues found. Safe to create new issue.") |
| 295 | + return 0 |
| 296 | + |
| 297 | + |
| 298 | +if __name__ == "__main__": |
| 299 | + sys.exit(main()) |
0 commit comments