|
| 1 | +#!/usr/bin/env python3 |
| 2 | +import argparse |
| 3 | +import os |
| 4 | +import torch |
| 5 | +import torch.nn as nn |
| 6 | +import torch.optim as optim |
| 7 | +from torch.utils.data import DataLoader |
| 8 | +from torchvision import datasets, transforms, models |
| 9 | +import numpy as np |
| 10 | +from sklearn.metrics import roc_auc_score |
| 11 | +import json |
| 12 | +import logging |
| 13 | + |
| 14 | +logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
| 15 | +logger = logging.getLogger() |
| 16 | + |
| 17 | +class Autoencoder(nn.Module): |
| 18 | + def __init__(self): |
| 19 | + super(Autoencoder, self).__init__() |
| 20 | + # Encoder |
| 21 | + self.encoder = nn.Sequential( |
| 22 | + nn.Conv2d(3, 64, 4, stride=2, padding=1), |
| 23 | + nn.ReLU(), |
| 24 | + nn.Conv2d(64, 128, 4, stride=2, padding=1), |
| 25 | + nn.ReLU(), |
| 26 | + nn.Conv2d(128, 256, 4, stride=2, padding=1), |
| 27 | + nn.ReLU(), |
| 28 | + nn.Conv2d(256, 1024, 4, stride=2, padding=1), # Change 512 => 1024 |
| 29 | + nn.ReLU(), |
| 30 | + ) |
| 31 | + # Decoder |
| 32 | + self.decoder = nn.Sequential( |
| 33 | + nn.ConvTranspose2d(1024, 256, 4, stride=2, padding=1), # Change 512 => 1024 |
| 34 | + nn.ReLU(), |
| 35 | + nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1), |
| 36 | + nn.ReLU(), |
| 37 | + nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1), |
| 38 | + nn.ReLU(), |
| 39 | + nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1), |
| 40 | + nn.Sigmoid(), |
| 41 | + ) |
| 42 | + |
| 43 | + def forward(self, x): |
| 44 | + x = self.encoder(x) |
| 45 | + x = self.decoder(x) |
| 46 | + return x |
| 47 | + |
| 48 | +def main(): |
| 49 | + with open('/opt/ml/input/config/hyperparameters.json') as json_file: |
| 50 | + hyperparameters = json.load(json_file) |
| 51 | + logger.info(hyperparameters) |
| 52 | + data_dir = "/opt/ml/input/data/training" |
| 53 | + model_dir = '/opt/ml/model' |
| 54 | + |
| 55 | + # Set device |
| 56 | + logger.info(f'Cuda available: {torch.cuda.is_available()}') |
| 57 | + device = torch.device('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') |
| 58 | + |
| 59 | + # Define data directories |
| 60 | + train_dir = os.path.join(data_dir, 'train') |
| 61 | + test_dir = os.path.join(data_dir, 'test') |
| 62 | + |
| 63 | + # Define transforms |
| 64 | + transform = transforms.Compose([ |
| 65 | + transforms.Resize((128, 128)), |
| 66 | + transforms.ToTensor(), |
| 67 | + ]) |
| 68 | + |
| 69 | + # Create datasets and loaders |
| 70 | + train_dataset = datasets.ImageFolder(root=train_dir, transform=transform) |
| 71 | + test_dataset = datasets.ImageFolder(root=test_dir, transform=transform) |
| 72 | + |
| 73 | + train_loader = DataLoader(train_dataset, batch_size=int(hyperparameters["batch-size"]), shuffle=True) |
| 74 | + test_loader = DataLoader(test_dataset, batch_size=int(hyperparameters["batch-size"]), shuffle=False) |
| 75 | + |
| 76 | + logger.info(f'Training dataset size: {len(train_dataset)}, Testing dataset size: {len(test_dataset)}') |
| 77 | + logger.info(f'Batch size: {hyperparameters["batch-size"]}, Epochs: {hyperparameters["epochs"]}, Learning rate: {hyperparameters["learning-rate"]}') |
| 78 | + |
| 79 | + # Initialize model, criterion, optimizer |
| 80 | + model = Autoencoder().to(device) |
| 81 | + criterion = nn.MSELoss() |
| 82 | + optimizer = optim.Adam(model.parameters(), lr=float(hyperparameters["learning-rate"])) |
| 83 | + |
| 84 | + # Training loop |
| 85 | + for epoch in range(int(hyperparameters["epochs"])): |
| 86 | + model.train() |
| 87 | + running_loss = 0.0 |
| 88 | + for data, _ in train_loader: |
| 89 | + data = data.to(device) |
| 90 | + optimizer.zero_grad() |
| 91 | + outputs = model(data) |
| 92 | + loss = criterion(outputs, data) |
| 93 | + loss.backward() |
| 94 | + optimizer.step() |
| 95 | + running_loss += loss.item() * data.size(0) |
| 96 | + epoch_loss = running_loss / len(train_loader.dataset) |
| 97 | + logger.info(f'Epoch [{epoch+1}/{int(hyperparameters["epochs"])}], Loss: {epoch_loss:.6f}') |
| 98 | + |
| 99 | + # Function to compute reconstruction errors and labels |
| 100 | + def compute_reconstruction_errors(loader): |
| 101 | + model.eval() |
| 102 | + errors = [] |
| 103 | + labels = [] |
| 104 | + with torch.no_grad(): |
| 105 | + for data, label in loader: |
| 106 | + data = data.to(device) |
| 107 | + outputs = model(data) |
| 108 | + loss = torch.mean((outputs - data) ** 2, dim=[1,2,3]) |
| 109 | + errors.extend(loss.cpu().numpy()) |
| 110 | + labels.extend(label.cpu().numpy()) |
| 111 | + return errors, labels |
| 112 | + |
| 113 | + # Compute reconstruction errors and labels for test dataset |
| 114 | + errors, labels = compute_reconstruction_errors(test_loader) |
| 115 | + |
| 116 | + logger.info(f'Sample reconstruction errors (first 10): {errors[:10]}') |
| 117 | + |
| 118 | + # Map labels: 'good' class (1) to 0, 'bad' class (0) to 1 |
| 119 | + labels = 1-np.array(labels) |
| 120 | + errors = np.array(errors) |
| 121 | + anomaly_labels = labels # Assuming 'bad' images are labeled as 1 |
| 122 | + anomaly_score = errors |
| 123 | + |
| 124 | + # Compute ROC AUC |
| 125 | + auc = roc_auc_score(anomaly_labels, anomaly_score) |
| 126 | + logger.info(f'ROC AUC: {auc:.4f}') |
| 127 | + |
| 128 | + # Save the trained model |
| 129 | + model_path = os.path.join(model_dir, 'model.pth') |
| 130 | + torch.save(model.state_dict(), model_path) |
| 131 | + logger.info(f'Model saved to {model_path}') |
| 132 | + |
| 133 | +if __name__ == '__main__': |
| 134 | + main() |
0 commit comments