@@ -59,8 +59,7 @@ from __future__ import absolute_import, division, print_function
5959
6060cimport cython
6161
62- from cpython.object cimport (Py_EQ, Py_NE, Py_LE, Py_GE, Py_LT, Py_GT,
63- PyTypeObject)
62+ from cpython.object cimport (Py_EQ, Py_NE, Py_LE, Py_GE, Py_LT, PyTypeObject)
6463
6564from cysignals.memory cimport sig_free, check_malloc
6665from cysignals.signals cimport sig_check, sig_on, sig_off, sig_block, sig_unblock
@@ -69,7 +68,7 @@ from .types cimport *
6968from .string_utils cimport to_string, to_bytes
7069from .paripriv cimport *
7170from .convert cimport PyObject_AsGEN, gen_to_integer
72- from .pari_instance cimport (prec_bits_to_words, prec_words_to_bits,
71+ from .pari_instance cimport (prec_bits_to_words,
7372 default_bitprec, get_var)
7473from .stack cimport (new_gen, new_gens2, new_gen_noclear,
7574 clone_gen, clear_stack, reset_avma,
@@ -871,7 +870,7 @@ cdef class Gen(Gen_base):
871870 return [r1, r2]
872871
873872 def nf_get_zk (self ):
874- """
873+ r """
875874 Returns a vector with a `\Z Z`-basis for the ring of integers of
876875 this number field. The first element is always `1`.
877876
@@ -1074,7 +1073,7 @@ cdef class Gen(Gen_base):
10741073 return new_gen(idealmoddivisor(self .g, ideal.g))
10751074
10761075 def pr_get_p (self ):
1077- """
1076+ r """
10781077 Returns the prime of `\Z Z` lying below this prime ideal.
10791078
10801079 NOTE: ``self`` must be a PARI prime ideal ( as returned by
@@ -1096,7 +1095,7 @@ cdef class Gen(Gen_base):
10961095 return clone_gen(pr_get_p(self .g))
10971096
10981097 def pr_get_e (self ):
1099- """
1098+ r """
11001099 Returns the ramification index ( over `\Q Q`) of this prime ideal.
11011100
11021101 NOTE: ``self`` must be a PARI prime ideal ( as returned by
@@ -1123,7 +1122,7 @@ cdef class Gen(Gen_base):
11231122 return e
11241123
11251124 def pr_get_f (self ):
1126- """
1125+ r """
11271126 Returns the residue class degree ( over `\Q Q`) of this prime ideal.
11281127
11291128 NOTE: ``self`` must be a PARI prime ideal ( as returned by
@@ -1372,9 +1371,9 @@ cdef class Gen(Gen_base):
13721371 # Index is not a tuple or slice, convert to integer
13731372 i = n
13741373
1375- # # there are no "out of bounds" problems
1376- # # for a polynomial or power series, so these go before
1377- # # bounds testing
1374+ # there are no "out of bounds" problems
1375+ # for a polynomial or power series, so these go before
1376+ # bounds testing
13781377 if pari_type == t_POL:
13791378 sig_on()
13801379 return new_gen(polcoeff0(self .g, i, - 1 ))
@@ -1515,7 +1514,7 @@ cdef class Gen(Gen_base):
15151514 >>> type( v[0 ])
15161515 <... 'cypari2. gen. Gen'>
15171516 """
1518- cdef Py_ssize_t i, j, step
1517+ cdef Py_ssize_t i, j
15191518 cdef Gen x = objtogen(y)
15201519
15211520 if isinstance (n, tuple ):
@@ -3448,7 +3447,7 @@ cdef class Gen(Gen_base):
34483447 return new_gens2(x, y)
34493448
34503449 def elltors (self ):
3451- """
3450+ r """
34523451 Return information about the torsion subgroup of the given
34533452 elliptic curve.
34543453
@@ -3695,7 +3694,7 @@ cdef class Gen(Gen_base):
36953694 return v
36963695
36973696 def nfbasis (self , long flag = 0 , fa = None ):
3698- """
3697+ r """
36993698 Integral basis of the field `\Q Q[a ]`, where ``a`` is a root of
37003699 the polynomial x.
37013700
@@ -4160,7 +4159,7 @@ cdef class Gen(Gen_base):
41604159 3
41614160 """
41624161 if typ(self .g) != t_CLOSURE:
4163- raise TypeError (f " arity() requires a t_CLOSURE" )
4162+ raise TypeError (" arity() requires a t_CLOSURE" )
41644163 return closure_arity(self .g)
41654164
41664165 def factorpadic (self , p , long r = 20 ):
0 commit comments