@@ -324,9 +324,7 @@ def get_rest_doc(function):
324
324
325
325
>>> print(get_rest_doc("ellap"))
326
326
Let :math:`E` be an :literal:`ell` structure as output by :literal:`ellinit`, defined over
327
- a number field or a finite field :math:`\mathbb{F}_q`. The argument :math:`p` is best left
328
- omitted if the curve is defined over a finite field, and must be a prime
329
- number or a maximal ideal otherwise. This function computes the trace of
327
+ a number field...computes the trace of
330
328
Frobenius :math:`t` for the elliptic curve :math:`E`, defined by the equation :math:`\#E(\mathbb{F}_q)
331
329
= q+1 - t` (for primes of good reduction).
332
330
<BLANKLINE>
@@ -339,7 +337,7 @@ def get_rest_doc(function):
339
337
:math:`L(E,s) = \sum_n a_n n^{-s}`, whence the function name. The equation must be
340
338
integral at :math:`p` but need not be minimal at :math:`p`; of course, a minimal model
341
339
will be more efficient.
342
- <BLANKLINE>
340
+ ...
343
341
::
344
342
<BLANKLINE>
345
343
? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q
@@ -358,18 +356,15 @@ def get_rest_doc(function):
358
356
*** ^-----------
359
357
*** ellap: inconsistent moduli in Rg_to_Fp:
360
358
11
361
- 13
362
- <BLANKLINE>
359
+ 13...
363
360
? Fq = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{11^3}
364
361
? E = ellinit([a+1,a], Fq); \\ y^2 = x^3 + (a+1)x + a, defined over F_q
365
362
? ellap(E)
366
363
%8 = -3
367
364
<BLANKLINE>
368
365
If the curve is defined over a more general number field than :math:`\mathbb{Q}`,
369
366
the maximal ideal :math:`p` must be explicitly given in :literal:`idealprimedec`
370
- format. If :math:`p` is above :math:`2` or :math:`3`, the function currently assumes (without
371
- checking) that the given model is locally minimal at :math:`p`. There is no
372
- restriction at other primes.
367
+ format...
373
368
<BLANKLINE>
374
369
::
375
370
<BLANKLINE>
0 commit comments