|
4 | 4 |
|
5 | 5 | *Splitting algebras* have been considered by Dan Laksov, Anders Thorup, |
6 | 6 | Torsten Ekedahl and others (see references below) in order to study |
7 | | -intersection theory of Grassmann and other flag schemes. Similarily as |
| 7 | +intersection theory of Grassmann and other flag schemes. Similarly as |
8 | 8 | *splitting fields* they can be considered as extensions of rings containing |
9 | 9 | all the roots of a given monic polynomial over that ring under the |
10 | 10 | assumption that its Galois group is the symmetric group of order equal |
@@ -151,7 +151,7 @@ class SplittingAlgebra(PolynomialQuotientRing_domain): |
151 | 151 | sage: Lc.<w> = LaurentPolynomialRing(ZZ) |
152 | 152 | sage: PabLc.<u,v> = Lc[]; t = polygen(PabLc) |
153 | 153 | sage: S.<x, y> = SplittingAlgebra(t^3 - u*t^2 + v*t - w) |
154 | | - doctest:...: UserWarning: Asuming x^3 - u*x^2 + v*x - w to have maximal |
| 154 | + doctest:...: UserWarning: Assuming x^3 - u*x^2 + v*x - w to have maximal |
155 | 155 | Galois group! |
156 | 156 |
|
157 | 157 | sage: roots = S.splitting_roots(); roots |
@@ -261,7 +261,7 @@ def __init__(self, monic_polynomial, names='X', iterate=True, warning=True): |
261 | 261 | # assuming this has been checked mathematically before |
262 | 262 | self._set_modulus_irreducible_ = True |
263 | 263 | if warning: |
264 | | - warn('Asuming %s to have maximal Galois group!' % (monic_polynomial)) |
| 264 | + warn('Assuming %s to have maximal Galois group!' % (monic_polynomial)) |
265 | 265 | warning = False # one warning must be enough |
266 | 266 |
|
267 | 267 | verbose("P %s defined:" % (P)) |
@@ -569,7 +569,7 @@ def lifting_map(self): |
569 | 569 |
|
570 | 570 | def splitting_roots(self): |
571 | 571 | r""" |
572 | | - Return the roots of the splitted equation. |
| 572 | + Return the roots of the split equation. |
573 | 573 |
|
574 | 574 | EXAMPLES:: |
575 | 575 |
|
@@ -750,10 +750,10 @@ def create_roots(monic_polynomial, warning=True): |
750 | 750 | roots = create_roots(monic_polynomial, warning=warning) |
751 | 751 |
|
752 | 752 | else: |
753 | | - # ------------------------------------------------------------------------------ |
754 | | - # root calculation was possible but maybe some more roots in an apropriate |
755 | | - # extension ring can be constructed. |
756 | | - # ------------------------------------------------------------------------------ |
| 753 | + # ------------------------------------------------------------------ |
| 754 | + # root calculation was possible but maybe some more roots in |
| 755 | + # an appropriate extension ring can be constructed. |
| 756 | + # ------------------------------------------------------------------ |
757 | 757 | num_roots = sum(m for r, m in root_list) |
758 | 758 | if num_roots < deg_pol: |
759 | 759 | h = monic_polynomial.variables()[0] |
|
0 commit comments