Skip to content
This repository was archived by the owner on Feb 1, 2023. It is now read-only.

Commit d67e096

Browse files
committed
more fixes in Pieri factors
1 parent fa2b39d commit d67e096

File tree

2 files changed

+36
-35
lines changed

2 files changed

+36
-35
lines changed

src/doc/en/reference/references/index.rst

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -3250,7 +3250,7 @@ REFERENCES:
32503250

32513251
**L**
32523252

3253-
.. [Lab2008] S. Labbé, *Propriétés combinatoires des `f`-palindromes*,
3253+
.. [Lab2008] \S. Labbé, *Propriétés combinatoires des* `f`-*palindromes*,
32543254
Mémoire de maîtrise en Mathématiques, Montréal, UQAM,
32553255
2008, 109 pages.
32563256
@@ -3270,15 +3270,15 @@ REFERENCES:
32703270
.. [Lan2002] \S. Lang : *Algebra*, 3rd ed., Springer (New York) (2002);
32713271
:doi:`10.1007/978-1-4613-0041-0`
32723272
3273-
.. [Lan2008] \E. Lanneau "Connected components of the strata of the
3274-
moduli spaces of quadratic differentials", Annales
3273+
.. [Lan2008] \E. Lanneau, *Connected components of the strata of the
3274+
moduli spaces of quadratic differentials*, Annales
32753275
sci. de l'ENS, serie 4, fascicule 1, 41, 1-56 (2008)
32763276
32773277
.. [Lasc] \A. Lascoux. *Chern and Yang through ice*.
32783278
Preprint.
32793279
3280-
.. [Lau2011] Alan G.B. Lauder, "Computations with classical and p-adic
3281-
modular forms", LMS J. of Comput. Math. 14 (2011),
3280+
.. [Lau2011] Alan G.B. Lauder, *Computations with classical and p-adic
3281+
modular forms*, LMS J. of Comput. Math. 14 (2011),
32823282
214-231.
32833283
32843284
.. [Laz1992] Daniel Lazard, *Solving Zero-dimensional Algebraic

src/sage/combinat/root_system/pieri_factors.py

Lines changed: 31 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -439,7 +439,7 @@ class PieriFactors_type_B(PieriFactors_finite_type):
439439
r"""
440440
The type B finite Pieri factors are realized as the set of
441441
elements that have a reduced word that is a subword of
442-
12...(n-1)n(n-1)...21. They are the restriction of the type C
442+
`12...(n-1)n(n-1)...21`. They are the restriction of the type C
443443
affine Pieri factors to the set of finite Weyl group elements
444444
under the usual embedding.
445445
"""
@@ -476,10 +476,9 @@ def maximal_elements_combinatorial(self):
476476
li = list(range(1, N)) + list(range(N, 0, -1))
477477
return [self.W.from_reduced_word(li)]
478478

479-
def stanley_symm_poly_weight(self,w):
479+
def stanley_symm_poly_weight(self, w):
480480
r"""
481-
Weight used in computing Stanley symmetric polynomials of type
482-
`B`.
481+
Weight used in computing Stanley symmetric polynomials of type `B`.
483482
484483
The weight for finite type B is the number of components
485484
of the support of an element minus the number of occurrences
@@ -648,13 +647,13 @@ def _test_maximal_elements(self, **options):
648647
sage: W = WeylGroup(['A',4,1])
649648
sage: W.pieri_factors()._test_maximal_elements(verbose = True)
650649
sage: W.pieri_factors(min_length = 1)._test_maximal_elements(verbose = True)
651-
Strict subset of the pieri factors; skipping test
650+
Strict subset of the Pieri factors; skipping test
652651
653652
"""
654653
tester = self._tester(**options)
655654
index_set = self.W.index_set()
656655
if self._min_length > 0 or self._max_length < len(self.W.index_set())-1 or self._max_support != frozenset(index_set):
657-
tester.info("\n Strict subset of the pieri factors; skipping test")
656+
tester.info("\n Strict subset of the Pieri factors; skipping test")
658657
return
659658
return super(PieriFactors_type_A_affine, self)._test_maximal_elements(**options)
660659

@@ -821,7 +820,7 @@ class PieriFactors_type_C_affine(PieriFactors_affine_type):
821820
r"""
822821
The type C affine Pieri factors are realized as the order ideal (in Bruhat
823822
order) generated by cyclic rotations of the element with unique reduced word
824-
123...(n-1)n(n-1)...3210.
823+
`123...(n-1)n(n-1)...3210`.
825824
826825
EXAMPLES::
827826
@@ -897,10 +896,11 @@ class PieriFactors_type_B_affine(PieriFactors_affine_type):
897896
The type B affine Pieri factors are realized as the order ideal (in Bruhat
898897
order) generated by the following elements:
899898
900-
- cyclic rotations of the element with reduced word 234...(n-1)n(n-1)...3210,
901-
except for 123...n...320 and 023...n...321.
902-
- 123...(n-1)n(n-1)...321
903-
- 023...(n-1)n(n-1)...320
899+
- cyclic rotations of the element with reduced word
900+
`234...(n-1)n(n-1)...3210`,
901+
except for `123...n...320` and `023...n...321`.
902+
- `123...(n-1)n(n-1)...321`
903+
- `023...(n-1)n(n-1)...320`
904904
905905
EXAMPLES::
906906
@@ -952,7 +952,7 @@ def maximal_elements_combinatorial(self):
952952
rotations.append(self.W.from_reduced_word([0])*self.W.from_reduced_word(range(2,n-1))*self.W.from_reduced_word(range(n-1,1,-1))*self.W.from_reduced_word([0]))
953953
return rotations
954954

955-
def stanley_symm_poly_weight(self,w):
955+
def stanley_symm_poly_weight(self, w):
956956
r"""
957957
Return the weight of a Pieri factor to be used in the definition of
958958
Stanley symmetric functions.
@@ -964,12 +964,12 @@ def stanley_symm_poly_weight(self,w):
964964
and 1 to be one node for the purpose of counting components of
965965
the complement (as if the Dynkin diagram were that of type C).
966966
Let n be the rank of the affine Weyl group in question (if
967-
type ['B',k,1] then we have n = k+1). Let chi(v.length() < n-1)
967+
type ``['B',k,1]`` then we have n = k+1). Let ``chi(v.length() < n-1)``
968968
be the indicator function that is 1 if the length of v is
969969
smaller than n-1, and 0 if the length of v is greater than or
970-
equal to n-1. If we say c'(v) = the number of components of
970+
equal to n-1. If we call ``c'(v)`` the number of components of
971971
the complement of the support of v, then the type B weight is
972-
given by weight = c'(v) - chi(v.length() < n-1).
972+
given by ``weight = c'(v) - chi(v.length() < n-1)``.
973973
974974
EXAMPLES::
975975
@@ -1004,12 +1004,13 @@ class PieriFactors_type_D_affine(PieriFactors_affine_type):
10041004
The type D affine Pieri factors are realized as the order ideal
10051005
(in Bruhat order) generated by the following elements:
10061006
1007-
* cyclic rotations of the element with reduced word 234...(n-2)n(n-1)(n-2)...3210
1007+
* cyclic rotations of the element with reduced word
1008+
`234...(n-2)n(n-1)(n-2)...3210`
10081009
such that 1 and 0 are always adjacent and (n-1) and n are always adjacent.
1009-
* 123...(n-2)n(n-1)(n-2)...321
1010-
* 023...(n-2)n(n-1)(n-2)...320
1011-
* n(n-2)...2102...(n-2)n
1012-
* (n-1)(n-2)...2102...(n-2)(n-1)
1010+
* `123...(n-2)n(n-1)(n-2)...321`
1011+
* `023...(n-2)n(n-1)(n-2)...320`
1012+
* `n(n-2)...2102...(n-2)n`
1013+
* `(n-1)(n-2)...2102...(n-2)(n-1)`
10131014
10141015
EXAMPLES::
10151016
@@ -1075,16 +1076,16 @@ def stanley_symm_poly_weight(self, w):
10751076
10761077
INPUT:
10771078
1078-
- ``w`` -- a pieri factor for this type
1079+
- ``w`` -- a Pieri factor for this type
10791080
1080-
For type D, this weight involves
1081+
For type `D`, this weight involves
10811082
the number of components of the complement of the support of
1082-
an element, where we consider 0 and 1 to be one node -- if 1
1083-
is in the support, then we pretend 0 in the support, and vice
1084-
versa. Similarly with `n-1` and `n`. We also consider 0 and
1085-
1, n-1 and n to be one node for the purpose of counting
1083+
an element, where we consider `0` and `1` to be one node -- if `1`
1084+
is in the support, then we pretend `0` in the support, and vice
1085+
versa. Similarly with `n-1` and `n`. We also consider `0` and
1086+
`1`, `n-1` and `n` to be one node for the purpose of counting
10861087
components of the complement (as if the Dynkin diagram were
1087-
that of type C).
1088+
that of type `C`).
10881089
10891090
Type D Stanley symmetric polynomial weights are still
10901091
conjectural. The given weight comes from conditions on
@@ -1116,9 +1117,9 @@ def stanley_symm_poly_weight(self, w):
11161117
if 1 in support or 0 in support:
11171118
support = support.union(set([1])).difference(set([0]))
11181119
if n in support or n - 1 in support:
1119-
support = support.union(set([n-2])).difference(set([n - 1]))
1120-
support_complement = set(range(1,n-1)).difference(support)
1121-
return DiGraph(DynkinDiagram(ct)).subgraph(support_complement).connected_components_number()-1
1120+
support = support.union(set([n - 2])).difference(set([n - 1]))
1121+
support_complement = set(range(1, n - 1)).difference(support)
1122+
return DiGraph(DynkinDiagram(ct)).subgraph(support_complement).connected_components_number() - 1
11221123

11231124

11241125
# Inserts those classes in CartanTypes

0 commit comments

Comments
 (0)