@@ -439,7 +439,7 @@ class PieriFactors_type_B(PieriFactors_finite_type):
439439 r"""
440440 The type B finite Pieri factors are realized as the set of
441441 elements that have a reduced word that is a subword of
442- 12...(n-1)n(n-1)...21. They are the restriction of the type C
442+ ` 12...(n-1)n(n-1)...21`. They are the restriction of the type C
443443 affine Pieri factors to the set of finite Weyl group elements
444444 under the usual embedding.
445445 """
@@ -476,10 +476,9 @@ def maximal_elements_combinatorial(self):
476476 li = list (range (1 , N )) + list (range (N , 0 , - 1 ))
477477 return [self .W .from_reduced_word (li )]
478478
479- def stanley_symm_poly_weight (self ,w ):
479+ def stanley_symm_poly_weight (self , w ):
480480 r"""
481- Weight used in computing Stanley symmetric polynomials of type
482- `B`.
481+ Weight used in computing Stanley symmetric polynomials of type `B`.
483482
484483 The weight for finite type B is the number of components
485484 of the support of an element minus the number of occurrences
@@ -648,13 +647,13 @@ def _test_maximal_elements(self, **options):
648647 sage: W = WeylGroup(['A',4,1])
649648 sage: W.pieri_factors()._test_maximal_elements(verbose = True)
650649 sage: W.pieri_factors(min_length = 1)._test_maximal_elements(verbose = True)
651- Strict subset of the pieri factors; skipping test
650+ Strict subset of the Pieri factors; skipping test
652651
653652 """
654653 tester = self ._tester (** options )
655654 index_set = self .W .index_set ()
656655 if self ._min_length > 0 or self ._max_length < len (self .W .index_set ())- 1 or self ._max_support != frozenset (index_set ):
657- tester .info ("\n Strict subset of the pieri factors; skipping test" )
656+ tester .info ("\n Strict subset of the Pieri factors; skipping test" )
658657 return
659658 return super (PieriFactors_type_A_affine , self )._test_maximal_elements (** options )
660659
@@ -821,7 +820,7 @@ class PieriFactors_type_C_affine(PieriFactors_affine_type):
821820 r"""
822821 The type C affine Pieri factors are realized as the order ideal (in Bruhat
823822 order) generated by cyclic rotations of the element with unique reduced word
824- 123...(n-1)n(n-1)...3210.
823+ ` 123...(n-1)n(n-1)...3210` .
825824
826825 EXAMPLES::
827826
@@ -897,10 +896,11 @@ class PieriFactors_type_B_affine(PieriFactors_affine_type):
897896 The type B affine Pieri factors are realized as the order ideal (in Bruhat
898897 order) generated by the following elements:
899898
900- - cyclic rotations of the element with reduced word 234...(n-1)n(n-1)...3210,
901- except for 123...n...320 and 023...n...321.
902- - 123...(n-1)n(n-1)...321
903- - 023...(n-1)n(n-1)...320
899+ - cyclic rotations of the element with reduced word
900+ `234...(n-1)n(n-1)...3210`,
901+ except for `123...n...320` and `023...n...321`.
902+ - `123...(n-1)n(n-1)...321`
903+ - `023...(n-1)n(n-1)...320`
904904
905905 EXAMPLES::
906906
@@ -952,7 +952,7 @@ def maximal_elements_combinatorial(self):
952952 rotations .append (self .W .from_reduced_word ([0 ])* self .W .from_reduced_word (range (2 ,n - 1 ))* self .W .from_reduced_word (range (n - 1 ,1 ,- 1 ))* self .W .from_reduced_word ([0 ]))
953953 return rotations
954954
955- def stanley_symm_poly_weight (self ,w ):
955+ def stanley_symm_poly_weight (self , w ):
956956 r"""
957957 Return the weight of a Pieri factor to be used in the definition of
958958 Stanley symmetric functions.
@@ -964,12 +964,12 @@ def stanley_symm_poly_weight(self,w):
964964 and 1 to be one node for the purpose of counting components of
965965 the complement (as if the Dynkin diagram were that of type C).
966966 Let n be the rank of the affine Weyl group in question (if
967- type ['B',k,1] then we have n = k+1). Let chi(v.length() < n-1)
967+ type `` ['B',k,1]`` then we have n = k+1). Let `` chi(v.length() < n-1)``
968968 be the indicator function that is 1 if the length of v is
969969 smaller than n-1, and 0 if the length of v is greater than or
970- equal to n-1. If we say c'(v) = the number of components of
970+ equal to n-1. If we call `` c'(v)`` the number of components of
971971 the complement of the support of v, then the type B weight is
972- given by weight = c'(v) - chi(v.length() < n-1).
972+ given by `` weight = c'(v) - chi(v.length() < n-1)`` .
973973
974974 EXAMPLES::
975975
@@ -1004,12 +1004,13 @@ class PieriFactors_type_D_affine(PieriFactors_affine_type):
10041004 The type D affine Pieri factors are realized as the order ideal
10051005 (in Bruhat order) generated by the following elements:
10061006
1007- * cyclic rotations of the element with reduced word 234...(n-2)n(n-1)(n-2)...3210
1007+ * cyclic rotations of the element with reduced word
1008+ `234...(n-2)n(n-1)(n-2)...3210`
10081009 such that 1 and 0 are always adjacent and (n-1) and n are always adjacent.
1009- * 123...(n-2)n(n-1)(n-2)...321
1010- * 023...(n-2)n(n-1)(n-2)...320
1011- * n(n-2)...2102...(n-2)n
1012- * (n-1)(n-2)...2102...(n-2)(n-1)
1010+ * ` 123...(n-2)n(n-1)(n-2)...321`
1011+ * ` 023...(n-2)n(n-1)(n-2)...320`
1012+ * ` n(n-2)...2102...(n-2)n`
1013+ * ` (n-1)(n-2)...2102...(n-2)(n-1)`
10131014
10141015 EXAMPLES::
10151016
@@ -1075,16 +1076,16 @@ def stanley_symm_poly_weight(self, w):
10751076
10761077 INPUT:
10771078
1078- - ``w`` -- a pieri factor for this type
1079+ - ``w`` -- a Pieri factor for this type
10791080
1080- For type D , this weight involves
1081+ For type `D` , this weight involves
10811082 the number of components of the complement of the support of
1082- an element, where we consider 0 and 1 to be one node -- if 1
1083- is in the support, then we pretend 0 in the support, and vice
1084- versa. Similarly with `n-1` and `n`. We also consider 0 and
1085- 1, n-1 and n to be one node for the purpose of counting
1083+ an element, where we consider `0` and `1` to be one node -- if `1`
1084+ is in the support, then we pretend `0` in the support, and vice
1085+ versa. Similarly with `n-1` and `n`. We also consider `0` and
1086+ `1`, ` n-1` and `n` to be one node for the purpose of counting
10861087 components of the complement (as if the Dynkin diagram were
1087- that of type C ).
1088+ that of type `C` ).
10881089
10891090 Type D Stanley symmetric polynomial weights are still
10901091 conjectural. The given weight comes from conditions on
@@ -1116,9 +1117,9 @@ def stanley_symm_poly_weight(self, w):
11161117 if 1 in support or 0 in support :
11171118 support = support .union (set ([1 ])).difference (set ([0 ]))
11181119 if n in support or n - 1 in support :
1119- support = support .union (set ([n - 2 ])).difference (set ([n - 1 ]))
1120- support_complement = set (range (1 ,n - 1 )).difference (support )
1121- return DiGraph (DynkinDiagram (ct )).subgraph (support_complement ).connected_components_number ()- 1
1120+ support = support .union (set ([n - 2 ])).difference (set ([n - 1 ]))
1121+ support_complement = set (range (1 , n - 1 )).difference (support )
1122+ return DiGraph (DynkinDiagram (ct )).subgraph (support_complement ).connected_components_number () - 1
11221123
11231124
11241125# Inserts those classes in CartanTypes
0 commit comments