Skip to content
This repository was archived by the owner on Feb 1, 2023. It is now read-only.

Commit d798a42

Browse files
author
Jonathan Kliem
committed
fix codestyle etc.
1 parent 342030c commit d798a42

File tree

1 file changed

+68
-68
lines changed

1 file changed

+68
-68
lines changed

src/sage/matrix/matrix_integer_dense.pyx

Lines changed: 68 additions & 68 deletions
Original file line numberDiff line numberDiff line change
@@ -377,7 +377,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
377377

378378
cdef get_unsafe(self, Py_ssize_t i, Py_ssize_t j):
379379
"""
380-
Returns (i, j) entry of self as a new Integer.
380+
Return (i, j) entry of self as a new Integer.
381381
382382
.. WARNING::
383383
@@ -431,7 +431,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
431431

432432
cdef inline double get_unsafe_double(self, Py_ssize_t i, Py_ssize_t j):
433433
"""
434-
Returns (j, i) entry of self as a new Integer.
434+
Return (j, i) entry of self as a new Integer.
435435
436436
.. WARNING::
437437
@@ -631,7 +631,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
631631

632632
def __copy__(self):
633633
r"""
634-
Returns a new copy of this matrix.
634+
Return a new copy of this matrix.
635635
636636
EXAMPLES::
637637
@@ -1045,7 +1045,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
10451045
# TODO: Implement better
10461046
cdef _vector_times_matrix_(self, Vector v):
10471047
"""
1048-
Returns the vector times matrix product.
1048+
Return the vector times matrix product.
10491049
10501050
INPUT:
10511051
@@ -1704,63 +1704,63 @@ cdef class Matrix_integer_dense(Matrix_dense):
17041704

17051705
def symplectic_form(self):
17061706
r"""
1707-
Find a symplectic basis for self if self is an anti-symmetric,
1708-
alternating matrix.
1709-
1710-
Returns a pair (F, C) such that the rows of C form a symplectic
1711-
basis for self and F = C \* self \* C.transpose().
1712-
1713-
Raises a ValueError if self is not anti-symmetric, or self is not
1714-
alternating.
1715-
1716-
Anti-symmetric means that `M = -M^t`. Alternating means
1717-
that the diagonal of `M` is identically zero.
1718-
1719-
A symplectic basis is a basis of the form
1720-
`e_1, \ldots, e_j, f_1, \ldots f_j, z_1, \dots, z_k`
1721-
such that
1722-
1723-
- `z_i M v^t` = 0 for all vectors `v`
1724-
1725-
- `e_i M {e_j}^t = 0` for all `i, j`
1726-
1727-
- `f_i M {f_j}^t = 0` for all `i, j`
1728-
1729-
- `e_i M {f_i}^t = 1` for all `i`
1730-
1731-
- `e_i M {f_j}^t = 0` for all `i` not equal
1732-
`j`.
1733-
1734-
The ordering for the factors `d_{i} | d_{i+1}` and for
1735-
the placement of zeroes was chosen to agree with the output of
1736-
:meth:`smith_form`.
1737-
1738-
See the example for a pictorial description of such a basis.
1739-
1740-
EXAMPLES::
1741-
1742-
sage: E = matrix(ZZ, 5, 5, [0, 14, 0, -8, -2, -14, 0, -3, -11, 4, 0, 3, 0, 0, 0, 8, 11, 0, 0, 8, 2, -4, 0, -8, 0]); E
1743-
[ 0 14 0 -8 -2]
1744-
[-14 0 -3 -11 4]
1745-
[ 0 3 0 0 0]
1746-
[ 8 11 0 0 8]
1747-
[ 2 -4 0 -8 0]
1748-
sage: F, C = E.symplectic_form()
1749-
sage: F
1750-
[ 0 0 1 0 0]
1751-
[ 0 0 0 2 0]
1752-
[-1 0 0 0 0]
1753-
[ 0 -2 0 0 0]
1754-
[ 0 0 0 0 0]
1755-
sage: F == C * E * C.transpose()
1756-
True
1757-
sage: E.smith_form()[0]
1758-
[1 0 0 0 0]
1759-
[0 1 0 0 0]
1760-
[0 0 2 0 0]
1761-
[0 0 0 2 0]
1762-
[0 0 0 0 0]
1763-
"""
1707+
Find a symplectic basis for self if self is an anti-symmetric,
1708+
alternating matrix.
1709+
1710+
Return a pair (F, C) such that the rows of C form a symplectic
1711+
basis for self and F = C \* self \* C.transpose().
1712+
1713+
Raise a ValueError if self is not anti-symmetric, or self is not
1714+
alternating.
1715+
1716+
Anti-symmetric means that `M = -M^t`. Alternating means
1717+
that the diagonal of `M` is identically zero.
1718+
1719+
A symplectic basis is a basis of the form
1720+
`e_1, \ldots, e_j, f_1, \ldots f_j, z_1, \dots, z_k`
1721+
such that
1722+
1723+
- `z_i M v^t` = 0 for all vectors `v`
1724+
1725+
- `e_i M {e_j}^t = 0` for all `i, j`
1726+
1727+
- `f_i M {f_j}^t = 0` for all `i, j`
1728+
1729+
- `e_i M {f_i}^t = 1` for all `i`
1730+
1731+
- `e_i M {f_j}^t = 0` for all `i` not equal
1732+
`j`.
1733+
1734+
The ordering for the factors `d_{i} | d_{i+1}` and for
1735+
the placement of zeroes was chosen to agree with the output of
1736+
:meth:`smith_form`.
1737+
1738+
See the example for a pictorial description of such a basis.
1739+
1740+
EXAMPLES::
1741+
1742+
sage: E = matrix(ZZ, 5, 5, [0, 14, 0, -8, -2, -14, 0, -3, -11, 4, 0, 3, 0, 0, 0, 8, 11, 0, 0, 8, 2, -4, 0, -8, 0]); E
1743+
[ 0 14 0 -8 -2]
1744+
[-14 0 -3 -11 4]
1745+
[ 0 3 0 0 0]
1746+
[ 8 11 0 0 8]
1747+
[ 2 -4 0 -8 0]
1748+
sage: F, C = E.symplectic_form()
1749+
sage: F
1750+
[ 0 0 1 0 0]
1751+
[ 0 0 0 2 0]
1752+
[-1 0 0 0 0]
1753+
[ 0 -2 0 0 0]
1754+
[ 0 0 0 0 0]
1755+
sage: F == C * E * C.transpose()
1756+
True
1757+
sage: E.smith_form()[0]
1758+
[1 0 0 0 0]
1759+
[0 1 0 0 0]
1760+
[0 0 2 0 0]
1761+
[0 0 0 2 0]
1762+
[0 0 0 0 0]
1763+
"""
17641764
import sage.matrix.symplectic_basis
17651765
return sage.matrix.symplectic_basis.symplectic_basis_over_ZZ(self)
17661766

@@ -2540,7 +2540,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
25402540

25412541
def _right_kernel_matrix(self, **kwds):
25422542
r"""
2543-
Returns a pair that includes a matrix of basis vectors
2543+
Return a pair that includes a matrix of basis vectors
25442544
for the right kernel of ``self``.
25452545
25462546
INPUT:
@@ -2558,7 +2558,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
25582558
25592559
OUTPUT:
25602560
2561-
Returns a pair. First item is the string is either
2561+
Return a pair. First item is the string is either
25622562
'computed-flint-int', 'computed-pari-int', 'computed-flint-int', which identifies
25632563
the nature of the basis vectors.
25642564
@@ -4724,7 +4724,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
47244724

47254725
def decomposition(self, **kwds):
47264726
"""
4727-
Returns the decomposition of the free module on which this matrix A
4727+
Return the decomposition of the free module on which this matrix A
47284728
acts from the right (i.e., the action is x goes to x A), along with
47294729
whether this matrix acts irreducibly on each factor. The factors
47304730
are guaranteed to be sorted in the same way as the corresponding
@@ -5087,7 +5087,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
50875087
R = R/d
50885088
i += 1
50895089
j = i
5090-
if i == nrows :
5090+
if i == nrows:
50915091
break # return res
50925092
if T_rows[i][i] == 0:
50935093
T_rows[i][i] = R
@@ -5179,7 +5179,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
51795179

51805180
def augment(self, right, subdivide=False):
51815181
r"""
5182-
Returns a new matrix formed by appending the matrix
5182+
Return a new matrix formed by appending the matrix
51835183
(or vector) ``right`` on the right side of ``self``.
51845184
51855185
INPUT:
@@ -5500,7 +5500,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
55005500

55015501
def transpose(self):
55025502
"""
5503-
Returns the transpose of self, without changing self.
5503+
Return the transpose of self, without changing self.
55045504
55055505
EXAMPLES:
55065506
@@ -5551,7 +5551,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
55515551

55525552
def antitranspose(self):
55535553
"""
5554-
Returns the antitranspose of self, without changing self.
5554+
Return the antitranspose of self, without changing self.
55555555
55565556
EXAMPLES::
55575557

0 commit comments

Comments
 (0)