@@ -377,7 +377,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
377377
378378 cdef get_unsafe(self , Py_ssize_t i, Py_ssize_t j):
379379 """
380- Returns (i, j) entry of self as a new Integer.
380+ Return (i, j) entry of self as a new Integer.
381381
382382 .. WARNING::
383383
@@ -431,7 +431,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
431431
432432 cdef inline double get_unsafe_double(self , Py_ssize_t i, Py_ssize_t j):
433433 """
434- Returns (j, i) entry of self as a new Integer.
434+ Return (j, i) entry of self as a new Integer.
435435
436436 .. WARNING::
437437
@@ -631,7 +631,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
631631
632632 def __copy__ (self ):
633633 r """
634- Returns a new copy of this matrix.
634+ Return a new copy of this matrix.
635635
636636 EXAMPLES::
637637
@@ -1045,7 +1045,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
10451045 # TODO: Implement better
10461046 cdef _vector_times_matrix_(self , Vector v):
10471047 """
1048- Returns the vector times matrix product.
1048+ Return the vector times matrix product.
10491049
10501050 INPUT:
10511051
@@ -1704,63 +1704,63 @@ cdef class Matrix_integer_dense(Matrix_dense):
17041704
17051705 def symplectic_form (self ):
17061706 r """
1707- Find a symplectic basis for self if self is an anti-symmetric,
1708- alternating matrix.
1709-
1710- Returns a pair ( F, C) such that the rows of C form a symplectic
1711- basis for self and F = C \* self \* C. transpose( ) .
1712-
1713- Raises a ValueError if self is not anti-symmetric, or self is not
1714- alternating.
1715-
1716- Anti-symmetric means that `M = -M^ t`. Alternating means
1717- that the diagonal of `M` is identically zero.
1718-
1719- A symplectic basis is a basis of the form
1720- `e_1, \l dots, e_j, f_1, \l dots f_j, z_1, \d ots, z_k`
1721- such that
1722-
1723- - `z_i M v^ t` = 0 for all vectors `v`
1724-
1725- - `e_i M {e_j}^ t = 0` for all `i, j`
1726-
1727- - `f_i M {f_j}^ t = 0` for all `i, j`
1728-
1729- - `e_i M {f_i}^ t = 1` for all `i`
1730-
1731- - `e_i M {f_j}^ t = 0` for all `i` not equal
1732- `j`.
1733-
1734- The ordering for the factors `d_{i} | d_{i+ 1}` and for
1735- the placement of zeroes was chosen to agree with the output of
1736- :meth:`smith_form`.
1737-
1738- See the example for a pictorial description of such a basis.
1739-
1740- EXAMPLES::
1741-
1742- sage: E = matrix( ZZ, 5, 5, [0, 14, 0, -8, -2, -14, 0, -3, -11, 4, 0, 3, 0, 0, 0, 8, 11, 0, 0, 8, 2, -4, 0, -8, 0 ]) ; E
1743- [ 0 14 0 -8 -2 ]
1744- [-14 0 -3 -11 4 ]
1745- [ 0 3 0 0 0 ]
1746- [ 8 11 0 0 8 ]
1747- [ 2 -4 0 -8 0 ]
1748- sage: F, C = E. symplectic_form( )
1749- sage: F
1750- [ 0 0 1 0 0 ]
1751- [ 0 0 0 2 0 ]
1752- [-1 0 0 0 0 ]
1753- [ 0 -2 0 0 0 ]
1754- [ 0 0 0 0 0 ]
1755- sage: F == C * E * C. transpose( )
1756- True
1757- sage: E. smith_form( ) [0 ]
1758- [1 0 0 0 0 ]
1759- [0 1 0 0 0 ]
1760- [0 0 2 0 0 ]
1761- [0 0 0 2 0 ]
1762- [0 0 0 0 0 ]
1763- """
1707+ Find a symplectic basis for self if self is an anti-symmetric,
1708+ alternating matrix.
1709+
1710+ Return a pair ( F, C) such that the rows of C form a symplectic
1711+ basis for self and F = C \* self \* C. transpose( ) .
1712+
1713+ Raise a ValueError if self is not anti-symmetric, or self is not
1714+ alternating.
1715+
1716+ Anti-symmetric means that `M = -M^ t`. Alternating means
1717+ that the diagonal of `M` is identically zero.
1718+
1719+ A symplectic basis is a basis of the form
1720+ `e_1, \l dots, e_j, f_1, \l dots f_j, z_1, \d ots, z_k`
1721+ such that
1722+
1723+ - `z_i M v^ t` = 0 for all vectors `v`
1724+
1725+ - `e_i M {e_j}^ t = 0` for all `i, j`
1726+
1727+ - `f_i M {f_j}^ t = 0` for all `i, j`
1728+
1729+ - `e_i M {f_i}^ t = 1` for all `i`
1730+
1731+ - `e_i M {f_j}^ t = 0` for all `i` not equal
1732+ `j`.
1733+
1734+ The ordering for the factors `d_{i} | d_{i+ 1}` and for
1735+ the placement of zeroes was chosen to agree with the output of
1736+ :meth:`smith_form`.
1737+
1738+ See the example for a pictorial description of such a basis.
1739+
1740+ EXAMPLES::
1741+
1742+ sage: E = matrix( ZZ, 5, 5, [0, 14, 0, -8, -2, -14, 0, -3, -11, 4, 0, 3, 0, 0, 0, 8, 11, 0, 0, 8, 2, -4, 0, -8, 0 ]) ; E
1743+ [ 0 14 0 -8 -2 ]
1744+ [-14 0 -3 -11 4 ]
1745+ [ 0 3 0 0 0 ]
1746+ [ 8 11 0 0 8 ]
1747+ [ 2 -4 0 -8 0 ]
1748+ sage: F, C = E. symplectic_form( )
1749+ sage: F
1750+ [ 0 0 1 0 0 ]
1751+ [ 0 0 0 2 0 ]
1752+ [-1 0 0 0 0 ]
1753+ [ 0 -2 0 0 0 ]
1754+ [ 0 0 0 0 0 ]
1755+ sage: F == C * E * C. transpose( )
1756+ True
1757+ sage: E. smith_form( ) [0 ]
1758+ [1 0 0 0 0 ]
1759+ [0 1 0 0 0 ]
1760+ [0 0 2 0 0 ]
1761+ [0 0 0 2 0 ]
1762+ [0 0 0 0 0 ]
1763+ """
17641764 import sage.matrix.symplectic_basis
17651765 return sage.matrix.symplectic_basis.symplectic_basis_over_ZZ(self )
17661766
@@ -2540,7 +2540,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
25402540
25412541 def _right_kernel_matrix (self , **kwds ):
25422542 r """
2543- Returns a pair that includes a matrix of basis vectors
2543+ Return a pair that includes a matrix of basis vectors
25442544 for the right kernel of ``self``.
25452545
25462546 INPUT:
@@ -2558,7 +2558,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
25582558
25592559 OUTPUT:
25602560
2561- Returns a pair. First item is the string is either
2561+ Return a pair. First item is the string is either
25622562 'computed-flint-int', 'computed-pari-int', 'computed-flint-int', which identifies
25632563 the nature of the basis vectors.
25642564
@@ -4724,7 +4724,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
47244724
47254725 def decomposition (self , **kwds ):
47264726 """
4727- Returns the decomposition of the free module on which this matrix A
4727+ Return the decomposition of the free module on which this matrix A
47284728 acts from the right (i.e., the action is x goes to x A), along with
47294729 whether this matrix acts irreducibly on each factor. The factors
47304730 are guaranteed to be sorted in the same way as the corresponding
@@ -5087,7 +5087,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
50875087 R = R/ d
50885088 i += 1
50895089 j = i
5090- if i == nrows :
5090+ if i == nrows:
50915091 break # return res
50925092 if T_rows[i][i] == 0 :
50935093 T_rows[i][i] = R
@@ -5179,7 +5179,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
51795179
51805180 def augment (self , right , subdivide = False ):
51815181 r """
5182- Returns a new matrix formed by appending the matrix
5182+ Return a new matrix formed by appending the matrix
51835183 ( or vector) ``right`` on the right side of ``self``.
51845184
51855185 INPUT:
@@ -5500,7 +5500,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
55005500
55015501 def transpose (self ):
55025502 """
5503- Returns the transpose of self, without changing self.
5503+ Return the transpose of self, without changing self.
55045504
55055505 EXAMPLES:
55065506
@@ -5551,7 +5551,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
55515551
55525552 def antitranspose (self ):
55535553 """
5554- Returns the antitranspose of self, without changing self.
5554+ Return the antitranspose of self, without changing self.
55555555
55565556 EXAMPLES::
55575557
0 commit comments