Skip to content
This repository was archived by the owner on Feb 1, 2023. It is now read-only.

Commit dfb2f29

Browse files
committed
trac 28458 cosmetic (pep8) changes
1 parent e1cf613 commit dfb2f29

File tree

1 file changed

+30
-28
lines changed

1 file changed

+30
-28
lines changed

src/sage/modular/hypergeometric_motive.py

Lines changed: 30 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -469,7 +469,7 @@ def __init__(self, cyclotomic=None, alpha_beta=None, gamma_list=None):
469469
self._gamma_array = cyclotomic_to_gamma(cyclo_up, cyclo_down)
470470
up = QQ.prod(capital_M(d) for d in cyclo_up)
471471
down = QQ.prod(capital_M(d) for d in cyclo_down)
472-
self._M_value = up/down
472+
self._M_value = up / down
473473
if 0 in alpha:
474474
self._swap = HypergeometricData(alpha_beta=(beta, alpha))
475475
if self.weight() % 2:
@@ -482,7 +482,7 @@ def __init__(self, cyclotomic=None, alpha_beta=None, gamma_list=None):
482482
self._sign_param = prod(cyclotomic_polynomial(v).disc()
483483
for v in cyclo_up)
484484

485-
### Internals
485+
# --- Internals ---
486486
def __repr__(self):
487487
"""
488488
Return the string representation.
@@ -531,7 +531,7 @@ def __ne__(self, other):
531531
"""
532532
return not (self == other)
533533

534-
### Parameters and invariants
534+
# --- Parameters and invariants ---
535535
def cyclotomic_data(self):
536536
"""
537537
Return the pair of tuples of indices of cyclotomic polynomials.
@@ -835,18 +835,19 @@ def hodge_function(self, x):
835835
"""
836836
d = self.degree()
837837
hn = self.hodge_numbers()
838-
if x<0:
838+
if x < 0:
839839
return 0
840840
i = 0
841841
j = 0
842842
k = 0
843843
while (i < d and i < x):
844844
i += hn[k]
845-
j += k*hn[k]
845+
j += k * hn[k]
846846
k += 1
847-
if i < x: return j
848-
return j - (i-x)*(k-1)
849-
847+
if i < x:
848+
return j
849+
return j - (i - x) * (k - 1)
850+
850851
def hodge_polygon_vertices(self):
851852
"""
852853
Return the vertices of the Hodge polygon.
@@ -865,11 +866,11 @@ def hodge_polygon_vertices(self):
865866
sage: H.hodge_polygon_vertices()
866867
[(0, 0), (1, 0), (4, 3), (7, 9), (10, 18), (13, 30), (14, 35)]
867868
"""
868-
l = [(0,0)]
869+
lst = [(0, 0)]
869870
hn = self.hodge_numbers()
870871
for i in range(len(hn)):
871-
l.append((l[-1][0] + hn[i], l[-1][1] + i*hn[i]))
872-
return l
872+
lst.append((lst[-1][0] + hn[i], lst[-1][1] + i * hn[i]))
873+
return lst
873874

874875
def M_value(self):
875876
"""
@@ -1004,7 +1005,7 @@ def canonical_scheme(self, t=None):
10041005
ideal = ring.ideal([eq0, eq1, self.M_value() * eq2_neg - t * eq2_pos])
10051006
return Spec(ring.quotient(ideal))
10061007

1007-
### Operations on data
1008+
# --- Operations on data ---
10081009
def twist(self):
10091010
r"""
10101011
Return the twist of this data.
@@ -1064,7 +1065,7 @@ def primitive_data(self):
10641065
d = gcd(g)
10651066
return HypergeometricData(gamma_list=[x / d for x in g])
10661067

1067-
### L-functions
1068+
# --- L-functions ---
10681069
@cached_method
10691070
def padic_H_value(self, p, f, t, prec=None):
10701071
"""
@@ -1129,13 +1130,14 @@ def padic_H_value(self, p, f, t, prec=None):
11291130
if 0 in alpha:
11301131
return self._swap.padic_H_value(p, f, ~t, prec)
11311132
gamma = self.gamma_array()
1132-
q = p ** f
1133+
q = p**f
11331134

1134-
# m = {r: beta.count(QQ((r, q - 1))) for r in range(q - 1)}
1135-
m = array.array('i', [0]*(q-1))
1135+
# m = {r: beta.count(QQ((r, q - 1))) for r in range(q - 1)}
1136+
m = array.array('i', [0] * (q - 1))
11361137
for b in beta:
1137-
u = b*(q-1)
1138-
if u.is_integer(): m[u] += 1
1138+
u = b * (q - 1)
1139+
if u.is_integer():
1140+
m[u] += 1
11391141
M = self.M_value()
11401142
D = -min(self.zigzag(x, flip_beta=True) for x in alpha + beta)
11411143
# also: D = (self.weight() + 1 - m[0]) // 2
@@ -1147,27 +1149,27 @@ def padic_H_value(self, p, f, t, prec=None):
11471149
p_ring = Qp(p, prec=prec)
11481150
teich = p_ring.teichmuller(M / t)
11491151

1150-
gauss_table = [None] *(q-1)
1151-
for r in range(q-1):
1152+
gauss_table = [None] * (q - 1)
1153+
for r in range(q - 1):
11521154
if gauss_table[r] is None:
11531155
gauss_table[r] = padic_gauss_sum(r, p, f, prec, factored=True,
11541156
algorithm='sage', parent=p_ring)
1155-
r1 = (r*p)%(q-1)
1157+
r1 = (r * p) % (q - 1)
11561158
while r1 != r:
11571159
gauss_table[r1] = gauss_table[r]
1158-
r1 = (r1*p)%(q-1)
1160+
r1 = (r1 * p) % (q - 1)
11591161

11601162
sigma = p_ring.zero()
11611163
u1 = p_ring.one()
1162-
for r in range(q-1):
1164+
for r in range(q - 1):
11631165
i = int(0)
11641166
u = u1
11651167
u1 *= teich
11661168
for v, gv in gamma.items():
1167-
r1 = (v*r) % (q-1)
1169+
r1 = (v * r) % (q - 1)
11681170
i += gauss_table[r1][0] * gv
11691171
u *= gauss_table[r1][1] ** gv
1170-
sigma += (-p)**(i//(p-1)) * u << (f*(D+m[0]-m[r]))
1172+
sigma += (-p)**(i // (p - 1)) * u << (f * (D + m[0] - m[r]))
11711173
resu = ZZ(-1) ** m[0] / (1 - q) * sigma
11721174
return IntegerModRing(p**prec)(resu).lift_centered()
11731175

@@ -1265,7 +1267,7 @@ def H_value(self, p, f, t, ring=None):
12651267
gauss_table = [gauss_sum(zeta_q ** r, Fq) for r in range(q - 1)]
12661268

12671269
sigma = sum(q**(D + m[0] - m[r]) *
1268-
prod(gauss_table[(-v * r) % (q - 1)] ** gv
1270+
prod(gauss_table[(-v * r) % (q - 1)]**gv
12691271
for v, gv in gamma.items()) *
12701272
teich ** r
12711273
for r in range(q - 1))
@@ -1314,9 +1316,9 @@ def sign(self, t, p):
13141316
if w % 2: # sign is always +1 for odd weight
13151317
sign = 1
13161318
elif d % 2:
1317-
sign = -kronecker_symbol((1-t) * self._sign_param, p)
1319+
sign = -kronecker_symbol((1 - t) * self._sign_param, p)
13181320
else:
1319-
sign = kronecker_symbol(t * (t-1) * self._sign_param, p)
1321+
sign = kronecker_symbol(t * (t - 1) * self._sign_param, p)
13201322
return sign
13211323

13221324
@cached_method

0 commit comments

Comments
 (0)