@@ -469,7 +469,7 @@ def __init__(self, cyclotomic=None, alpha_beta=None, gamma_list=None):
469469 self ._gamma_array = cyclotomic_to_gamma (cyclo_up , cyclo_down )
470470 up = QQ .prod (capital_M (d ) for d in cyclo_up )
471471 down = QQ .prod (capital_M (d ) for d in cyclo_down )
472- self ._M_value = up / down
472+ self ._M_value = up / down
473473 if 0 in alpha :
474474 self ._swap = HypergeometricData (alpha_beta = (beta , alpha ))
475475 if self .weight () % 2 :
@@ -482,7 +482,7 @@ def __init__(self, cyclotomic=None, alpha_beta=None, gamma_list=None):
482482 self ._sign_param = prod (cyclotomic_polynomial (v ).disc ()
483483 for v in cyclo_up )
484484
485- ### Internals
485+ # --- Internals ---
486486 def __repr__ (self ):
487487 """
488488 Return the string representation.
@@ -531,7 +531,7 @@ def __ne__(self, other):
531531 """
532532 return not (self == other )
533533
534- ### Parameters and invariants
534+ # --- Parameters and invariants ---
535535 def cyclotomic_data (self ):
536536 """
537537 Return the pair of tuples of indices of cyclotomic polynomials.
@@ -835,18 +835,19 @@ def hodge_function(self, x):
835835 """
836836 d = self .degree ()
837837 hn = self .hodge_numbers ()
838- if x < 0 :
838+ if x < 0 :
839839 return 0
840840 i = 0
841841 j = 0
842842 k = 0
843843 while (i < d and i < x ):
844844 i += hn [k ]
845- j += k * hn [k ]
845+ j += k * hn [k ]
846846 k += 1
847- if i < x : return j
848- return j - (i - x )* (k - 1 )
849-
847+ if i < x :
848+ return j
849+ return j - (i - x ) * (k - 1 )
850+
850851 def hodge_polygon_vertices (self ):
851852 """
852853 Return the vertices of the Hodge polygon.
@@ -865,11 +866,11 @@ def hodge_polygon_vertices(self):
865866 sage: H.hodge_polygon_vertices()
866867 [(0, 0), (1, 0), (4, 3), (7, 9), (10, 18), (13, 30), (14, 35)]
867868 """
868- l = [(0 ,0 )]
869+ lst = [(0 , 0 )]
869870 hn = self .hodge_numbers ()
870871 for i in range (len (hn )):
871- l .append ((l [- 1 ][0 ] + hn [i ], l [- 1 ][1 ] + i * hn [i ]))
872- return l
872+ lst .append ((lst [- 1 ][0 ] + hn [i ], lst [- 1 ][1 ] + i * hn [i ]))
873+ return lst
873874
874875 def M_value (self ):
875876 """
@@ -1004,7 +1005,7 @@ def canonical_scheme(self, t=None):
10041005 ideal = ring .ideal ([eq0 , eq1 , self .M_value () * eq2_neg - t * eq2_pos ])
10051006 return Spec (ring .quotient (ideal ))
10061007
1007- ### Operations on data
1008+ # --- Operations on data ---
10081009 def twist (self ):
10091010 r"""
10101011 Return the twist of this data.
@@ -1064,7 +1065,7 @@ def primitive_data(self):
10641065 d = gcd (g )
10651066 return HypergeometricData (gamma_list = [x / d for x in g ])
10661067
1067- ### L-functions
1068+ # --- L-functions ---
10681069 @cached_method
10691070 def padic_H_value (self , p , f , t , prec = None ):
10701071 """
@@ -1129,13 +1130,14 @@ def padic_H_value(self, p, f, t, prec=None):
11291130 if 0 in alpha :
11301131 return self ._swap .padic_H_value (p , f , ~ t , prec )
11311132 gamma = self .gamma_array ()
1132- q = p ** f
1133+ q = p ** f
11331134
1134- # m = {r: beta.count(QQ((r, q - 1))) for r in range(q - 1)}
1135- m = array .array ('i' , [0 ]* ( q - 1 ))
1135+ # m = {r: beta.count(QQ((r, q - 1))) for r in range(q - 1)}
1136+ m = array .array ('i' , [0 ] * ( q - 1 ))
11361137 for b in beta :
1137- u = b * (q - 1 )
1138- if u .is_integer (): m [u ] += 1
1138+ u = b * (q - 1 )
1139+ if u .is_integer ():
1140+ m [u ] += 1
11391141 M = self .M_value ()
11401142 D = - min (self .zigzag (x , flip_beta = True ) for x in alpha + beta )
11411143 # also: D = (self.weight() + 1 - m[0]) // 2
@@ -1147,27 +1149,27 @@ def padic_H_value(self, p, f, t, prec=None):
11471149 p_ring = Qp (p , prec = prec )
11481150 teich = p_ring .teichmuller (M / t )
11491151
1150- gauss_table = [None ] * ( q - 1 )
1151- for r in range (q - 1 ):
1152+ gauss_table = [None ] * ( q - 1 )
1153+ for r in range (q - 1 ):
11521154 if gauss_table [r ] is None :
11531155 gauss_table [r ] = padic_gauss_sum (r , p , f , prec , factored = True ,
11541156 algorithm = 'sage' , parent = p_ring )
1155- r1 = (r * p ) % ( q - 1 )
1157+ r1 = (r * p ) % ( q - 1 )
11561158 while r1 != r :
11571159 gauss_table [r1 ] = gauss_table [r ]
1158- r1 = (r1 * p ) % ( q - 1 )
1160+ r1 = (r1 * p ) % ( q - 1 )
11591161
11601162 sigma = p_ring .zero ()
11611163 u1 = p_ring .one ()
1162- for r in range (q - 1 ):
1164+ for r in range (q - 1 ):
11631165 i = int (0 )
11641166 u = u1
11651167 u1 *= teich
11661168 for v , gv in gamma .items ():
1167- r1 = (v * r ) % (q - 1 )
1169+ r1 = (v * r ) % (q - 1 )
11681170 i += gauss_table [r1 ][0 ] * gv
11691171 u *= gauss_table [r1 ][1 ] ** gv
1170- sigma += (- p )** (i // ( p - 1 )) * u << (f * ( D + m [0 ]- m [r ]))
1172+ sigma += (- p )** (i // ( p - 1 )) * u << (f * ( D + m [0 ] - m [r ]))
11711173 resu = ZZ (- 1 ) ** m [0 ] / (1 - q ) * sigma
11721174 return IntegerModRing (p ** prec )(resu ).lift_centered ()
11731175
@@ -1265,7 +1267,7 @@ def H_value(self, p, f, t, ring=None):
12651267 gauss_table = [gauss_sum (zeta_q ** r , Fq ) for r in range (q - 1 )]
12661268
12671269 sigma = sum (q ** (D + m [0 ] - m [r ]) *
1268- prod (gauss_table [(- v * r ) % (q - 1 )] ** gv
1270+ prod (gauss_table [(- v * r ) % (q - 1 )]** gv
12691271 for v , gv in gamma .items ()) *
12701272 teich ** r
12711273 for r in range (q - 1 ))
@@ -1314,9 +1316,9 @@ def sign(self, t, p):
13141316 if w % 2 : # sign is always +1 for odd weight
13151317 sign = 1
13161318 elif d % 2 :
1317- sign = - kronecker_symbol ((1 - t ) * self ._sign_param , p )
1319+ sign = - kronecker_symbol ((1 - t ) * self ._sign_param , p )
13181320 else :
1319- sign = kronecker_symbol (t * (t - 1 ) * self ._sign_param , p )
1321+ sign = kronecker_symbol (t * (t - 1 ) * self ._sign_param , p )
13201322 return sign
13211323
13221324 @cached_method
0 commit comments