@@ -1012,9 +1012,10 @@ def __mul__(self, other):
10121012 # coefficients of the monomials in it
10131013 parent = self .parent ()
10141014 mons = parent ._actor (other ).monomial_coefficients ()
1015- result = parent ()
1015+
10161016 # this must not be the cached parent.zero(),
10171017 # since otherwise it gets changed in place!!
1018+ result = parent ()
10181019
10191020 for path in mons :
10201021 # Multiply by the scalar
@@ -1888,7 +1889,7 @@ def an_element(self):
18881889 Element of quiver representation
18891890 """
18901891 # Here we just use the an_element function from each space.
1891- elements = dict (( v , self ._spaces [v ].an_element ()) for v in self ._quiver )
1892+ elements = { v : self ._spaces [v ].an_element () for v in self ._quiver }
18921893 return self (elements )
18931894
18941895 def support (self ):
@@ -2914,8 +2915,8 @@ def _left_edge_action(self, edge, element):
29142915 return self .left_edge_action (edge [:- 1 ], self .left_edge_action (edge [- 1 ], element ))
29152916
29162917 # Now we are just acting by a single edge
2917- elems = dict (( v , self ._left_action_mats [edge ][v ]* element ._elems [v ])
2918- for v in self ._quiver )
2918+ elems = { v : self ._left_action_mats [edge ][v ] * element ._elems [v ]
2919+ for v in self ._quiver }
29192920 return self (elems )
29202921
29212922 def is_left_module (self ):
@@ -3032,5 +3033,5 @@ def __init__(self, k, P, basis):
30323033 maps [e ][i , j ] = k .one ()
30333034
30343035 # Create the spaces and then the representation
3035- spaces = dict (( v , len (self ._bases [v ])) for v in Q )
3036+ spaces = { v : len (self ._bases [v ]) for v in Q }
30363037 super (QuiverRep_with_dual_path_basis , self ).__init__ (k , P , spaces , maps )
0 commit comments