|
41 | 41 | from sage.structure.parent_base import ParentWithBase |
42 | 42 | from .morphism import HeckeOperator, Morphism, DegeneracyMap |
43 | 43 | from .torsion_subgroup import RationalTorsionSubgroup, QQbarTorsionSubgroup |
44 | | -from .finite_subgroup import (FiniteSubgroup_lattice, FiniteSubgroup, TorsionPoint) |
45 | | -from .cuspidal_subgroup import CuspidalSubgroup, RationalCuspidalSubgroup, RationalCuspSubgroup |
| 44 | +from .finite_subgroup import (FiniteSubgroup_lattice, FiniteSubgroup, |
| 45 | + TorsionPoint) |
| 46 | +from .cuspidal_subgroup import (CuspidalSubgroup, RationalCuspidalSubgroup, |
| 47 | + RationalCuspSubgroup) |
46 | 48 | from sage.rings.all import ZZ, QQ, QQbar, Integer |
47 | 49 | from sage.arith.all import LCM, divisors, prime_range, next_prime |
48 | 50 | from sage.rings.ring import is_Ring |
49 | 51 | from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing |
50 | 52 | from sage.rings.infinity import infinity |
51 | 53 | from sage.modules.free_module import is_FreeModule |
52 | | -from sage.modular.arithgroup.all import is_CongruenceSubgroup, is_Gamma0, is_Gamma1, is_GammaH |
| 54 | +from sage.modular.arithgroup.all import (is_CongruenceSubgroup, is_Gamma0, |
| 55 | + is_Gamma1, is_GammaH) |
53 | 56 | from sage.modular.modsym.all import ModularSymbols |
54 | 57 | from sage.modular.modsym.space import ModularSymbolsSpace |
55 | 58 | from sage.modular.modform.constructor import Newform |
|
67 | 70 | ['cremona_letter_code', 'CremonaDatabase']) |
68 | 71 |
|
69 | 72 |
|
70 | | -def is_ModularAbelianVariety(x): |
| 73 | +def is_ModularAbelianVariety(x) -> bool: |
71 | 74 | """ |
72 | 75 | Return True if x is a modular abelian variety. |
73 | 76 |
|
|
0 commit comments