@@ -2584,7 +2584,7 @@ def is_brace(self, coNP_certificate=False):
25842584 sage: C = graphs.CycleGraph(6)
25852585 sage: D = MatchingCoveredGraph(C)
25862586 sage: D.is_brace(coNP_certificate=True)
2587- (False, [(1, 2 , None), (5, 4 , None)], {0, 1, 5 })
2587+ (False, [(0, 5 , None), (2, 3 , None)], {0, 1, 2 })
25882588
25892589 If the input matching covered graph is nonbipartite, a
25902590 :exc:`ValueError` is thrown::
@@ -2637,7 +2637,7 @@ def is_brace(self, coNP_certificate=False):
26372637
26382638 # For each edge (a, b) in E(H(e)) ∩ M with a in A, b —> a in D(e).
26392639 # For each edge (a, b) in E(H(e)) with a in A, a —> b in D(e).
2640- for a , b , * _ in H .edge_iterator ():
2640+ for a , b in H .edge_iterator (labels = False , sort_vertices = True ):
26412641
26422642 if a in B :
26432643 a , b = b , a
@@ -2678,7 +2678,7 @@ def dfs(v, visited, neighbor_iterator):
26782678 X = set ()
26792679 dfs (root , X , D .neighbor_out_iterator )
26802680
2681- for a , b in H .edge_iterator (labels = False ):
2681+ for a , b in H .edge_iterator (labels = False , sort_vertices = True ):
26822682 if (a in X ) ^ (b in X ):
26832683 x = a if a in A else b
26842684 color_class = x not in X
@@ -2690,7 +2690,7 @@ def dfs(v, visited, neighbor_iterator):
26902690
26912691 # Compute the nontrivial tight cut C := ∂(Y)
26922692 C = [(u , v , w ) if u in X else (v , u , w )
2693- for u , v , w in self .edge_iterator ()
2693+ for u , v , w in self .edge_iterator (sort_vertices = True )
26942694 if (u in X ) ^ (v in X )]
26952695
26962696 return (False , C , set (X ))
0 commit comments