@@ -187,18 +187,18 @@ def _compute_factored_isogeny_prime_power(P, l, n, split=.8, velu_sqrt_bound=Non
187
187
All choices of ``split`` produce the same result, albeit
188
188
not equally fast::
189
189
190
- sage: # needs sage.rings.finite_rings
190
+ sage: # needs sage.rings.finite_rings, long time (:issue:`39569`)
191
191
sage: E = EllipticCurve(GF(2^127 - 1), [1,0])
192
192
sage: P, = E.gens()
193
193
sage: (l,n), = P.order().factor()
194
194
sage: phis = hom_composite._compute_factored_isogeny_prime_power(P,l,n)
195
195
sage: phis == hom_composite._compute_factored_isogeny_prime_power(P,l,n, split=0) # long time -- about 10s
196
196
True
197
- sage: phis == hom_composite._compute_factored_isogeny_prime_power(P,l,n, split=0.1) # long time (:issue:`39569`)
197
+ sage: phis == hom_composite._compute_factored_isogeny_prime_power(P,l,n, split=0.1)
198
198
True
199
- sage: phis == hom_composite._compute_factored_isogeny_prime_power(P,l,n, split=0.5) # long time (:issue:`39569`)
199
+ sage: phis == hom_composite._compute_factored_isogeny_prime_power(P,l,n, split=0.5)
200
200
True
201
- sage: phis == hom_composite._compute_factored_isogeny_prime_power(P,l,n, split=0.9) # long time (:issue:`39569`)
201
+ sage: phis == hom_composite._compute_factored_isogeny_prime_power(P,l,n, split=0.9)
202
202
True
203
203
sage: phis == hom_composite._compute_factored_isogeny_prime_power(P,l,n, split=1)
204
204
True
0 commit comments