@@ -107,18 +107,18 @@ def algdep(z, degree, known_bits=None, use_bits=None, known_digits=None,
107
107
compute a 200-bit approximation to `sqrt(2)` which is wrong in the
108
108
33'rd bit::
109
109
110
- sage: z = sqrt(RealField(200)(2)) + (1/2)^33
111
- sage: p = algdep(z, 4); p # optional - sage.libs.pari
110
+ sage: z = sqrt(RealField(200)(2)) + (1/2)^33 # optional - sage.rings.real_mpfr
111
+ sage: p = algdep(z, 4); p # optional - sage.libs.pari sage.rings.real_mpfr
112
112
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
113
- sage: factor(p) # optional - sage.libs.pari
113
+ sage: factor(p) # optional - sage.libs.pari sage.rings.real_mpfr
114
114
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
115
- sage: algdep(z, 4, known_bits=32) # optional - sage.libs.pari
115
+ sage: algdep(z, 4, known_bits=32) # optional - sage.libs.pari sage.rings.real_mpfr
116
116
x^2 - 2
117
- sage: algdep(z, 4, known_digits=10) # optional - sage.libs.pari
117
+ sage: algdep(z, 4, known_digits=10) # optional - sage.libs.pari sage.rings.real_mpfr
118
118
x^2 - 2
119
- sage: algdep(z, 4, use_bits=25) # optional - sage.libs.pari
119
+ sage: algdep(z, 4, use_bits=25) # optional - sage.libs.pari sage.rings.real_mpfr
120
120
x^2 - 2
121
- sage: algdep(z, 4, use_digits=8) # optional - sage.libs.pari
121
+ sage: algdep(z, 4, use_digits=8) # optional - sage.libs.pari sage.rings.real_mpfr
122
122
x^2 - 2
123
123
124
124
Using the ``height_bound`` and ``proof`` parameters, we can see that
@@ -3662,7 +3662,7 @@ def binomial(x, m, **kwds):
3662
3662
-6
3663
3663
sage: binomial(-5, -2)
3664
3664
0
3665
- sage: binomial(RealField()('2.5'), 2)
3665
+ sage: binomial(RealField()('2.5'), 2) # optional - sage.rings.real_mpfr
3666
3666
1.87500000000000
3667
3667
sage: n = var('n'); binomial(n, 2) # optional - sage.symbolic
3668
3668
1/2*(n - 1)*n
@@ -3684,7 +3684,7 @@ def binomial(x, m, **kwds):
3684
3684
'pari' (faster for large values)::
3685
3685
3686
3686
sage: a = binomial(100, 45, algorithm='gmp')
3687
- sage: b = binomial(100, 45, algorithm='pari')
3687
+ sage: b = binomial(100, 45, algorithm='pari') # optional - sage.libs.pari
3688
3688
sage: a == b
3689
3689
True
3690
3690
0 commit comments