Skip to content

Commit 074f6a8

Browse files
author
Matthias Koeppe
committed
src/sage/rings/polynomial/polynomial_ring_constructor.py: Move added TestSuite calls to the end of the TESTS section
1 parent c0026d3 commit 074f6a8

File tree

1 file changed

+55
-12
lines changed

1 file changed

+55
-12
lines changed

src/sage/rings/polynomial/polynomial_ring_constructor.py

Lines changed: 55 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -141,10 +141,10 @@ def PolynomialRing(base_ring, *args, **kwds):
141141
...
142142
TypeError: you must specify the names of the variables
143143
144-
sage: R.<abc> = PolynomialRing(QQ, sparse=True); TestSuite(R).run(); R
144+
sage: R.<abc> = PolynomialRing(QQ, sparse=True); R
145145
Sparse Univariate Polynomial Ring in abc over Rational Field
146146
147-
sage: R.<w> = PolynomialRing(PolynomialRing(GF(7),'k')); TestSuite(R).run(); R
147+
sage: R.<w> = PolynomialRing(PolynomialRing(GF(7),'k')); R
148148
Univariate Polynomial Ring in w over Univariate Polynomial Ring in k over Finite Field of size 7
149149
150150
The square bracket notation::
@@ -179,9 +179,9 @@ def PolynomialRing(base_ring, *args, **kwds):
179179
like 2^1000000 * x^1000000 in FLINT may be unwise.
180180
::
181181
182-
sage: ZxNTL = PolynomialRing(ZZ, 'x', implementation='NTL'); TestSuite(ZxNTL).run(skip='_test_pickling'); ZxNTL
182+
sage: ZxNTL = PolynomialRing(ZZ, 'x', implementation='NTL'); ZxNTL
183183
Univariate Polynomial Ring in x over Integer Ring (using NTL)
184-
sage: ZxFLINT = PolynomialRing(ZZ, 'x', implementation='FLINT'); TestSuite(ZxFLINT).run(); ZxFLINT
184+
sage: ZxFLINT = PolynomialRing(ZZ, 'x', implementation='FLINT'); ZxFLINT
185185
Univariate Polynomial Ring in x over Integer Ring
186186
sage: ZxFLINT is ZZ['x']
187187
True
@@ -209,7 +209,7 @@ def PolynomialRing(base_ring, *args, **kwds):
209209
210210
The generic implementation uses neither NTL nor FLINT::
211211
212-
sage: Zx = PolynomialRing(ZZ, 'x', implementation='generic'); TestSuite(Zx).run(skip=['_test_construction', '_test_pickling']); Zx
212+
sage: Zx = PolynomialRing(ZZ, 'x', implementation='generic'); Zx
213213
Univariate Polynomial Ring in x over Integer Ring
214214
sage: Zx.element_class
215215
<... 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
@@ -218,7 +218,7 @@ def PolynomialRing(base_ring, *args, **kwds):
218218
219219
::
220220
221-
sage: R = PolynomialRing(QQ, 'a,b,c'); TestSuite(R).run(skip='_test_elements'); R
221+
sage: R = PolynomialRing(QQ, 'a,b,c'); R
222222
Multivariate Polynomial Ring in a, b, c over Rational Field
223223
224224
sage: S = PolynomialRing(QQ, ['a','b','c']); S
@@ -236,9 +236,9 @@ def PolynomialRing(base_ring, *args, **kwds):
236236
237237
There is a unique polynomial ring with each term order::
238238
239-
sage: R = PolynomialRing(QQ, 'x,y,z', order='degrevlex'); TestSuite(R).run(skip='_test_elements'); R
239+
sage: R = PolynomialRing(QQ, 'x,y,z', order='degrevlex'); R
240240
Multivariate Polynomial Ring in x, y, z over Rational Field
241-
sage: S = PolynomialRing(QQ, 'x,y,z', order='invlex'); TestSuite(S).run(skip=['_test_construction', '_test_elements']); S
241+
sage: S = PolynomialRing(QQ, 'x,y,z', order='invlex'); S
242242
Multivariate Polynomial Ring in x, y, z over Rational Field
243243
sage: S is PolynomialRing(QQ, 'x,y,z', order='invlex')
244244
True
@@ -253,15 +253,15 @@ def PolynomialRing(base_ring, *args, **kwds):
253253
254254
sage: PolynomialRing(QQ,["x"])
255255
Univariate Polynomial Ring in x over Rational Field
256-
sage: Q0 = PolynomialRing(QQ,[]); TestSuite(Q0).run(skip=['_test_elements', '_test_elements_eq_transitive', '_test_gcd_vs_xgcd', '_test_quo_rem']); Q0
256+
sage: PolynomialRing(QQ,[])
257257
Multivariate Polynomial Ring in no variables over Rational Field
258258
259259
The Singular implementation always returns a multivariate ring,
260260
even for 1 variable::
261261
262262
sage: PolynomialRing(QQ, "x", implementation="singular")
263263
Multivariate Polynomial Ring in x over Rational Field
264-
sage: P.<x> = PolynomialRing(QQ, implementation="singular"); TestSuite(P).run(skip=['_test_construction', '_test_elements', '_test_euclidean_degree', '_test_quo_rem']); P
264+
sage: P.<x> = PolynomialRing(QQ, implementation="singular"); P
265265
Multivariate Polynomial Ring in x over Rational Field
266266
267267
**3. PolynomialRing(base_ring, n, names, ...)** (where the arguments
@@ -289,9 +289,9 @@ def PolynomialRing(base_ring, *args, **kwds):
289289
290290
::
291291
292-
sage: Q1 = PolynomialRing(QQ,"x",1); TestSuite(Q1).run(skip=['_test_construction', '_test_elements', '_test_euclidean_degree', '_test_quo_rem']); Q1
292+
sage: PolynomialRing(QQ,"x",1)
293293
Multivariate Polynomial Ring in x over Rational Field
294-
sage: Q0 = PolynomialRing(QQ,"x",0); TestSuite(Q0).run(skip=['_test_elements', '_test_elements_eq_transitive', '_test_gcd_vs_xgcd', '_test_quo_rem']); Q0
294+
sage: PolynomialRing(QQ,"x",0)
295295
Multivariate Polynomial Ring in no variables over Rational Field
296296
297297
It is easy in Python to create fairly arbitrary variable names. For
@@ -552,6 +552,49 @@ def PolynomialRing(base_ring, *args, **kwds):
552552
Traceback (most recent call last):
553553
...
554554
TypeError: unable to convert 'x' to an integer
555+
556+
We run the testsuite for various polynomial rings, skipping tests that currently fail::
557+
558+
sage: R.<w> = PolynomialRing(PolynomialRing(GF(7),'k')); TestSuite(R).run(); R
559+
Univariate Polynomial Ring in w over Univariate Polynomial Ring in k over Finite Field of size 7
560+
sage: ZxNTL = PolynomialRing(ZZ, 'x', implementation='NTL'); TestSuite(ZxNTL).run(skip='_test_pickling'); ZxNTL
561+
Univariate Polynomial Ring in x over Integer Ring (using NTL)
562+
sage: ZxFLINT = PolynomialRing(ZZ, 'x', implementation='FLINT'); TestSuite(ZxFLINT).run(); ZxFLINT
563+
Univariate Polynomial Ring in x over Integer Ring
564+
sage: Zx = PolynomialRing(ZZ, 'x', implementation='generic'); TestSuite(Zx).run(skip=['_test_construction', '_test_pickling']); Zx
565+
Univariate Polynomial Ring in x over Integer Ring
566+
sage: R = PolynomialRing(QQ, 'a,b,c'); TestSuite(R).run(skip='_test_elements'); R
567+
Multivariate Polynomial Ring in a, b, c over Rational Field
568+
sage: R = PolynomialRing(QQ, 'x,y,z', order='degrevlex'); TestSuite(R).run(skip='_test_elements'); R
569+
Multivariate Polynomial Ring in x, y, z over Rational Field
570+
sage: S = PolynomialRing(QQ, 'x,y,z', order='invlex'); TestSuite(S).run(skip=['_test_construction', '_test_elements']); S
571+
Multivariate Polynomial Ring in x, y, z over Rational Field
572+
sage: Q0 = PolynomialRing(QQ,[]); TestSuite(Q0).run(skip=['_test_elements', '_test_elements_eq_transitive', '_test_gcd_vs_xgcd', '_test_quo_rem']); Q0
573+
Multivariate Polynomial Ring in no variables over Rational Field
574+
sage: P.<x> = PolynomialRing(QQ, implementation="singular"); TestSuite(P).run(skip=['_test_construction', '_test_elements', '_test_euclidean_degree', '_test_quo_rem']); P
575+
Multivariate Polynomial Ring in x over Rational Field
576+
sage: Q1 = PolynomialRing(QQ,"x",1); TestSuite(Q1).run(skip=['_test_construction', '_test_elements', '_test_euclidean_degree', '_test_quo_rem']); Q1
577+
Multivariate Polynomial Ring in x over Rational Field
578+
sage: Q0 = PolynomialRing(QQ,"x",0); TestSuite(Q0).run(skip=['_test_elements', '_test_elements_eq_transitive', '_test_gcd_vs_xgcd', '_test_quo_rem']); Q0
579+
Multivariate Polynomial Ring in no variables over Rational Field
580+
sage: R = PolynomialRing(GF(2), 'j', implementation="generic"); TestSuite(R).run(skip=['_test_construction', '_test_pickling']); type(R)
581+
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category'>
582+
sage: S = PolynomialRing(GF(2), 'j'); TestSuite(S).run(); type(S)
583+
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_p_with_category'>
584+
sage: R = PolynomialRing(ZZ, 'x,y', implementation="generic"); TestSuite(R).run(skip=['_test_elements', '_test_elements_eq_transitive']); type(R)
585+
<class 'sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain_with_category'>
586+
sage: S = PolynomialRing(ZZ, 'x,y'); TestSuite(S).run(skip='_test_elements'); type(S)
587+
<class 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular'>
588+
sage: R = PolynomialRing(ZZ, 'j', sparse=True); TestSuite(R).run(); type(R)
589+
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_with_category'>
590+
sage: R = PolynomialRing(GF(49), 'j', sparse=True); TestSuite(R).run(); type(R)
591+
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category'>
592+
sage: P.<y,z> = PolynomialRing(RealIntervalField(2))
593+
sage: TestSuite(P).run(skip=['_test_elements', '_test_elements_eq_transitive'])
594+
sage: Q.<x> = PolynomialRing(P)
595+
sage: TestSuite(Q).run(skip=['_test_additive_associativity', '_test_associativity', '_test_distributivity', '_test_prod'])
596+
sage: R.<x,y> = PolynomialRing(RIF,2)
597+
sage: TestSuite(R).run(skip=['_test_elements', '_test_elements_eq_transitive'])
555598
"""
556599
if not ring.is_Ring(base_ring):
557600
raise TypeError("base_ring {!r} must be a ring".format(base_ring))

0 commit comments

Comments
 (0)