Skip to content

Commit 087d1ec

Browse files
author
Matthias Koeppe
committed
sage -fixdoctests src/sage/groups
1 parent a96c0e7 commit 087d1ec

File tree

4 files changed

+32
-38
lines changed

4 files changed

+32
-38
lines changed

src/sage/groups/abelian_gps/dual_abelian_group.py

Lines changed: 26 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,6 @@
2525
sage: F = AbelianGroup(5, [2,5,7,8,9], names='abcde')
2626
sage: (a, b, c, d, e) = F.gens()
2727
28-
sage: # needs sage.rings.number_field
2928
sage: Fd = F.dual_group(names='ABCDE')
3029
sage: Fd.base_ring()
3130
Cyclotomic Field of order 2520 and degree 576
@@ -82,7 +81,6 @@ def is_DualAbelianGroup(x):
8281
8382
EXAMPLES::
8483
85-
sage: # needs sage.rings.number_field
8684
sage: from sage.groups.abelian_gps.dual_abelian_group import is_DualAbelianGroup
8785
sage: F = AbelianGroup(5,[3,5,7,8,9], names=list("abcde"))
8886
sage: Fd = F.dual_group()
@@ -105,7 +103,7 @@ class DualAbelianGroup_class(UniqueRepresentation, AbelianGroupBase):
105103
EXAMPLES::
106104
107105
sage: F = AbelianGroup(5,[3,5,7,8,9], names="abcde")
108-
sage: F.dual_group() # needs sage.rings.number_field
106+
sage: F.dual_group()
109107
Dual of Abelian Group isomorphic to Z/3Z x Z/5Z x Z/7Z x Z/8Z x Z/9Z
110108
over Cyclotomic Field of order 2520 and degree 576
111109
@@ -123,7 +121,7 @@ def __init__(self, G, names, base_ring):
123121
EXAMPLES::
124122
125123
sage: F = AbelianGroup(5,[3,5,7,8,9], names="abcde")
126-
sage: F.dual_group() # needs sage.rings.number_field
124+
sage: F.dual_group()
127125
Dual of Abelian Group isomorphic to Z/3Z x Z/5Z x Z/7Z x Z/8Z x Z/9Z
128126
over Cyclotomic Field of order 2520 and degree 576
129127
"""
@@ -180,9 +178,9 @@ def _repr_(self):
180178
EXAMPLES::
181179
182180
sage: F = AbelianGroup(5, [2,5,7,8,9], names='abcde')
183-
sage: Fd = F.dual_group(names='ABCDE', # needs sage.rings.number_field
181+
sage: Fd = F.dual_group(names='ABCDE',
184182
....: base_ring=CyclotomicField(2*5*7*8*9))
185-
sage: Fd # indirect doctest # needs sage.rings.number_field
183+
sage: Fd # indirect doctest
186184
Dual of Abelian Group isomorphic to Z/2Z x Z/5Z x Z/7Z x Z/8Z x Z/9Z
187185
over Cyclotomic Field of order 5040 and degree 1152
188186
sage: Fd = F.dual_group(names='ABCDE', base_ring=CC) # needs sage.rings.real_mpfr
@@ -209,8 +207,8 @@ def _latex_(self):
209207
EXAMPLES::
210208
211209
sage: F = AbelianGroup(3, [2]*3)
212-
sage: Fd = F.dual_group() # needs sage.rings.number_field
213-
sage: Fd._latex_() # needs sage.rings.number_field
210+
sage: Fd = F.dual_group()
211+
sage: Fd._latex_()
214212
'$\\mathrm{DualAbelianGroup}( AbelianGroup ( 3, (2, 2, 2) ) )$'
215213
"""
216214
return r"$\mathrm{DualAbelianGroup}( AbelianGroup ( %s, %s ) )$" % (self.ngens(), self.gens_orders())
@@ -251,7 +249,6 @@ def gen(self, i=0):
251249
252250
EXAMPLES::
253251
254-
sage: # needs sage.rings.number_field
255252
sage: F = AbelianGroup(3, [1,2,3], names='a')
256253
sage: Fd = F.dual_group(names="A")
257254
sage: Fd.0
@@ -279,8 +276,8 @@ def gens(self):
279276
280277
EXAMPLES::
281278
282-
sage: F = AbelianGroup([7,11]).dual_group() # needs sage.rings.number_field
283-
sage: F.gens() # needs sage.rings.number_field
279+
sage: F = AbelianGroup([7,11]).dual_group()
280+
sage: F.gens()
284281
(X0, X1)
285282
"""
286283
n = self.group().ngens()
@@ -293,8 +290,8 @@ def ngens(self):
293290
EXAMPLES::
294291
295292
sage: F = AbelianGroup([7]*100)
296-
sage: Fd = F.dual_group() # needs sage.rings.number_field
297-
sage: Fd.ngens() # needs sage.rings.number_field
293+
sage: Fd = F.dual_group()
294+
sage: Fd.ngens()
298295
100
299296
"""
300297
return self.group().ngens()
@@ -310,8 +307,8 @@ def gens_orders(self):
310307
EXAMPLES::
311308
312309
sage: F = AbelianGroup([5]*1000)
313-
sage: Fd = F.dual_group() # needs sage.rings.number_field
314-
sage: invs = Fd.gens_orders(); len(invs) # needs sage.rings.number_field
310+
sage: Fd = F.dual_group()
311+
sage: invs = Fd.gens_orders(); len(invs)
315312
1000
316313
"""
317314
return self.group().gens_orders()
@@ -325,8 +322,8 @@ def invariants(self):
325322
EXAMPLES::
326323
327324
sage: F = AbelianGroup([5]*1000)
328-
sage: Fd = F.dual_group() # needs sage.rings.number_field
329-
sage: invs = Fd.gens_orders(); len(invs) # needs sage.rings.number_field
325+
sage: Fd = F.dual_group()
326+
sage: invs = Fd.gens_orders(); len(invs)
330327
1000
331328
"""
332329
# TODO: deprecate
@@ -340,9 +337,9 @@ def __contains__(self, X):
340337
341338
sage: F = AbelianGroup(5,[2, 3, 5, 7, 8], names="abcde")
342339
sage: a,b,c,d,e = F.gens()
343-
sage: Fd = F.dual_group(names="ABCDE") # needs sage.rings.number_field
344-
sage: A,B,C,D,E = Fd.gens() # needs sage.rings.number_field
345-
sage: A*B^2*D^7 in Fd # needs sage.rings.number_field
340+
sage: Fd = F.dual_group(names="ABCDE")
341+
sage: A,B,C,D,E = Fd.gens()
342+
sage: A*B^2*D^7 in Fd
346343
True
347344
"""
348345
return X.parent() == self and is_DualAbelianGroupElement(X)
@@ -354,8 +351,8 @@ def order(self):
354351
EXAMPLES::
355352
356353
sage: G = AbelianGroup([2,3,9])
357-
sage: Gd = G.dual_group() # needs sage.rings.number_field
358-
sage: Gd.order() # needs sage.rings.number_field
354+
sage: Gd = G.dual_group()
355+
sage: Gd.order()
359356
54
360357
"""
361358
G = self.group()
@@ -368,10 +365,10 @@ def is_commutative(self):
368365
EXAMPLES::
369366
370367
sage: G = AbelianGroup([2,3,9])
371-
sage: Gd = G.dual_group() # needs sage.rings.number_field
372-
sage: Gd.is_commutative() # needs sage.rings.number_field
368+
sage: Gd = G.dual_group()
369+
sage: Gd.is_commutative()
373370
True
374-
sage: Gd.is_abelian() # needs sage.rings.number_field
371+
sage: Gd.is_abelian()
375372
True
376373
"""
377374
return True
@@ -384,8 +381,8 @@ def list(self):
384381
EXAMPLES::
385382
386383
sage: G = AbelianGroup([2,3], names="ab")
387-
sage: Gd = G.dual_group(names="AB") # needs sage.rings.number_field
388-
sage: Gd.list() # needs sage.rings.number_field
384+
sage: Gd = G.dual_group(names="AB")
385+
sage: Gd.list()
389386
(1, B, B^2, A, A*B, A*B^2)
390387
"""
391388
if not self.is_finite():
@@ -400,8 +397,8 @@ def __iter__(self):
400397
EXAMPLES::
401398
402399
sage: G = AbelianGroup([2,3], names="ab")
403-
sage: Gd = G.dual_group(names="AB") # needs sage.rings.number_field
404-
sage: [X for X in Gd] # needs sage.rings.number_field
400+
sage: Gd = G.dual_group(names="AB")
401+
sage: [X for X in Gd]
405402
[1, B, B^2, A, A*B, A*B^2]
406403
407404
sage: # needs sage.rings.real_mpfr

src/sage/groups/abelian_gps/dual_abelian_group_element.py

Lines changed: 4 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -8,13 +8,12 @@
88
sage: F
99
Multiplicative Abelian group isomorphic to C2 x C3 x C5 x C7 x C8
1010
11-
sage: Fd = F.dual_group(names="ABCDE"); Fd # needs sage.rings.number_field
11+
sage: Fd = F.dual_group(names="ABCDE"); Fd
1212
Dual of Abelian Group isomorphic to Z/2Z x Z/3Z x Z/5Z x Z/7Z x Z/8Z
1313
over Cyclotomic Field of order 840 and degree 192
1414
1515
The elements of the dual group can be evaluated on elements of the original group::
1616
17-
sage: # needs sage.rings.number_field
1817
sage: a,b,c,d,e = F.gens()
1918
sage: A,B,C,D,E = Fd.gens()
2019
sage: A*B^2*D^7
@@ -71,10 +70,10 @@ def is_DualAbelianGroupElement(x) -> bool:
7170
EXAMPLES::
7271
7372
sage: from sage.groups.abelian_gps.dual_abelian_group import is_DualAbelianGroupElement
74-
sage: F = AbelianGroup(5, [5,5,7,8,9], names=list("abcde")).dual_group() # needs sage.rings.number_field
75-
sage: is_DualAbelianGroupElement(F) # needs sage.rings.number_field
73+
sage: F = AbelianGroup(5, [5,5,7,8,9], names=list("abcde")).dual_group()
74+
sage: is_DualAbelianGroupElement(F)
7675
False
77-
sage: is_DualAbelianGroupElement(F.an_element()) # needs sage.rings.number_field
76+
sage: is_DualAbelianGroupElement(F.an_element())
7877
True
7978
"""
8079
return isinstance(x, DualAbelianGroupElement)
@@ -96,7 +95,6 @@ def __call__(self, g):
9695
9796
EXAMPLES::
9897
99-
sage: # needs sage.rings.number_field
10098
sage: F = AbelianGroup(5, [2,3,5,7,8], names="abcde")
10199
sage: a,b,c,d,e = F.gens()
102100
sage: Fd = F.dual_group(names="ABCDE")
@@ -147,7 +145,6 @@ def word_problem(self, words):
147145
148146
EXAMPLES::
149147
150-
sage: # needs sage.rings.number_field
151148
sage: G = AbelianGroup(5,[3, 5, 5, 7, 8], names="abcde")
152149
sage: Gd = G.dual_group(names="abcde")
153150
sage: a,b,c,d,e = Gd.gens()

src/sage/groups/matrix_gps/linear.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -115,7 +115,7 @@ def GL(n, R, var='a'):
115115
116116
Here is the Cayley graph of (relatively small) finite General Linear Group::
117117
118-
sage: # needs sage.libs.gap sage.graphs
118+
sage: # needs sage.graphs sage.libs.gap
119119
sage: g = GL(2,3)
120120
sage: d = g.cayley_graph(); d
121121
Digraph on 48 vertices

src/sage/groups/matrix_gps/matrix_group.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
66
Loading, saving, ... works::
77
8-
sage: # needs sage.libs,gap
8+
sage: # needs sage.libs
99
sage: G = GL(2,5); G
1010
General Linear Group of degree 2 over Finite Field of size 5
1111
sage: TestSuite(G).run()

0 commit comments

Comments
 (0)