@@ -761,7 +761,7 @@ def algebraic_complement(self):
761
761
# for the formula we're using here.
762
762
Q = self .parent ()
763
763
OSPs = Q .basis ().keys ()
764
- return Q ._from_dict ({OSPs (A .reversed ()): c for ( A , c ) in self },
764
+ return Q ._from_dict ({OSPs (A .reversed ()): c for A , c in self },
765
765
remove_zeros = False )
766
766
767
767
def coalgebraic_complement (self ):
@@ -798,7 +798,7 @@ def coalgebraic_complement(self):
798
798
# for the formula we're using here.
799
799
Q = self .parent ()
800
800
OSPs = Q .basis ().keys ()
801
- return Q ._from_dict ({OSPs (A .complement ()): c for ( A , c ) in self },
801
+ return Q ._from_dict ({OSPs (A .complement ()): c for A , c in self },
802
802
remove_zeros = False )
803
803
804
804
def star_involution (self ):
@@ -834,7 +834,7 @@ def star_involution(self):
834
834
# for the formula we're using here.
835
835
Q = self .parent ()
836
836
OSPs = Q .basis ().keys ()
837
- return Q ._from_dict ({OSPs (A .complement ().reversed ()): c for ( A , c ) in self },
837
+ return Q ._from_dict ({OSPs (A .complement ().reversed ()): c for A , c in self },
838
838
remove_zeros = False )
839
839
840
840
X = Characteristic
@@ -1280,7 +1280,7 @@ def img(A):
1280
1280
return {OSPs (P ): (one if (len (R ) % 2 == len (P ) % 2 )
1281
1281
else mine )
1282
1282
for R in Rs for P in R .strongly_fatter ()}
1283
- return Q ._from_dict (linear_combination ((img (A ), c ) for ( A , c ) in self ))
1283
+ return Q ._from_dict (linear_combination ((img (A ), c ) for A , c in self ))
1284
1284
1285
1285
def coalgebraic_complement (self ):
1286
1286
r"""
@@ -1328,7 +1328,7 @@ def img(A):
1328
1328
return {OSPs (P ): (one if (len (R ) % 2 == len (P ) % 2 )
1329
1329
else mine )
1330
1330
for R in Rs for P in R .strongly_fatter ()}
1331
- return Q ._from_dict (linear_combination ((img (A ), c ) for ( A , c ) in self ))
1331
+ return Q ._from_dict (linear_combination ((img (A ), c ) for A , c in self ))
1332
1332
1333
1333
def star_involution (self ):
1334
1334
r"""
@@ -1363,7 +1363,7 @@ def star_involution(self):
1363
1363
# for the formula we're using here.
1364
1364
Q = self .parent ()
1365
1365
OSPs = Q .basis ().keys ()
1366
- return Q ._from_dict ({OSPs (A .complement ().reversed ()): c for ( A , c ) in self },
1366
+ return Q ._from_dict ({OSPs (A .complement ().reversed ()): c for A , c in self },
1367
1367
remove_zeros = False )
1368
1368
1369
1369
Q = StronglyCoarser
@@ -1633,7 +1633,7 @@ def product_on_basis(self, x, y):
1633
1633
return self .monomial (x )
1634
1634
xlist = [(j , (k == 0 ))
1635
1635
for part in x
1636
- for ( k , j ) in enumerate (sorted (part ))]
1636
+ for k , j in enumerate (sorted (part ))]
1637
1637
# xlist is a list of the form
1638
1638
# [(e_1, s_1), (e_2, s_2), ..., (e_n, s_n)],
1639
1639
# where e_1, e_2, ..., e_n are the entries of the parts of
@@ -1643,7 +1643,7 @@ def product_on_basis(self, x, y):
1643
1643
m = max (max (part ) for part in x ) # The degree of x
1644
1644
ylist = [(m + j , (k == 0 ))
1645
1645
for part in y
1646
- for ( k , j ) in enumerate (sorted (part ))]
1646
+ for k , j in enumerate (sorted (part ))]
1647
1647
# ylist is like xlist, but for y instead of x, and with
1648
1648
# a shift by m.
1649
1649
@@ -1748,7 +1748,7 @@ def standardize(P): # standardize an ordered set partition
1748
1748
deconcatenates .append ((left , right ))
1749
1749
T = self .tensor_square ()
1750
1750
return T .sum_of_monomials ((standardize (left ), standardize (right ))
1751
- for ( left , right ) in deconcatenates )
1751
+ for left , right in deconcatenates )
1752
1752
1753
1753
class Element (WQSymBasis_abstract .Element ):
1754
1754
def algebraic_complement (self ):
@@ -1797,7 +1797,7 @@ def img(A):
1797
1797
return {OSPs (P ): (one if (len (R ) % 2 == len (P ) % 2 )
1798
1798
else mine )
1799
1799
for R in Rs for P in R .strongly_finer ()}
1800
- return Phi ._from_dict (linear_combination ((img (A ), c ) for ( A , c ) in self ))
1800
+ return Phi ._from_dict (linear_combination ((img (A ), c ) for A , c in self ))
1801
1801
1802
1802
def coalgebraic_complement (self ):
1803
1803
r"""
@@ -1845,7 +1845,7 @@ def img(A):
1845
1845
return {OSPs (P ): (one if (len (R ) % 2 == len (P ) % 2 )
1846
1846
else mine )
1847
1847
for R in Rs for P in R .strongly_finer ()}
1848
- return Phi ._from_dict (linear_combination ((img (A ), c ) for ( A , c ) in self ))
1848
+ return Phi ._from_dict (linear_combination ((img (A ), c ) for A , c in self ))
1849
1849
1850
1850
def star_involution (self ):
1851
1851
r"""
@@ -1880,7 +1880,7 @@ def star_involution(self):
1880
1880
# for the formula we're using here.
1881
1881
Phi = self .parent ()
1882
1882
OSPs = Phi .basis ().keys ()
1883
- return Phi ._from_dict ({OSPs (A .complement ().reversed ()): c for ( A , c ) in self },
1883
+ return Phi ._from_dict ({OSPs (A .complement ().reversed ()): c for A , c in self },
1884
1884
remove_zeros = False )
1885
1885
1886
1886
Phi = StronglyFiner
@@ -2262,7 +2262,7 @@ def algebraic_complement(self):
2262
2262
# complement componentwise, then convert back.
2263
2263
parent = self .parent ()
2264
2264
M = parent .realization_of ().M ()
2265
- dct = {I .reversed (): coeff for ( I , coeff ) in M (self )}
2265
+ dct = {I .reversed (): coeff for I , coeff in M (self )}
2266
2266
return parent (M ._from_dict (dct , remove_zeros = False ))
2267
2267
2268
2268
def coalgebraic_complement (self ):
@@ -2427,7 +2427,7 @@ def coalgebraic_complement(self):
2427
2427
# complement componentwise, then convert back.
2428
2428
parent = self .parent ()
2429
2429
M = parent .realization_of ().M ()
2430
- dct = {I .complement (): coeff for ( I , coeff ) in M (self )}
2430
+ dct = {I .complement (): coeff for I , coeff in M (self )}
2431
2431
return parent (M ._from_dict (dct , remove_zeros = False ))
2432
2432
2433
2433
def star_involution (self ):
@@ -2555,7 +2555,7 @@ def star_involution(self):
2555
2555
# complement componentwise, then convert back.
2556
2556
parent = self .parent ()
2557
2557
M = parent .realization_of ().M ()
2558
- dct = {I .reversed ().complement (): coeff for ( I , coeff ) in M (self )}
2558
+ dct = {I .reversed ().complement (): coeff for I , coeff in M (self )}
2559
2559
return parent (M ._from_dict (dct , remove_zeros = False ))
2560
2560
2561
2561
def to_quasisymmetric_function (self ):
@@ -2597,4 +2597,4 @@ def to_quasisymmetric_function(self):
2597
2597
M = QuasiSymmetricFunctions (self .parent ().base_ring ()).Monomial ()
2598
2598
MW = self .parent ().realization_of ().M ()
2599
2599
return M .sum_of_terms ((i .to_composition (), coeff )
2600
- for ( i , coeff ) in MW (self ))
2600
+ for i , coeff in MW (self ))
0 commit comments