@@ -898,14 +898,14 @@ def babai(self, *args, **kwargs):
898
898
return self .approximate_closest_vector (* args , ** kwargs )
899
899
900
900
def hadamard_ratio (self , use_reduced_basis = True ):
901
- """
901
+ r """
902
902
Computes the normalized Hadamard ratio of the given basis.
903
903
904
- The normalized Hadamard ratio of the basis `B = \ {v_1, v_2, \dots, v_n\ }` is defined as
904
+ The normalized Hadamard ratio of the basis `B = {v_1, v_2, \dots, v_n}` is defined as
905
905
906
906
.. MATH::
907
907
908
- \mathcal{H}(B) = \left(\ dfrac{det L}{\|v_1\| \|v_2\| \cdots \|v_n\|}\r ight) ^{\f rac {1}{n}}
908
+ \mathcal{H}(B) = \dfrac{det L}{\|v_1\| \|v_2\| \cdots \|v_n\|}^{\dfrac {1}{n}}
909
909
910
910
911
911
The closer this ratio is to 1, the more orthogonal the basis is.
@@ -944,14 +944,13 @@ def hadamard_ratio(self, use_reduced_basis=True):
944
944
return ratio
945
945
946
946
def gaussian_heuristic (self , exact_form = False ):
947
- """
948
- Computes the Gaussian expected shortest length, also known as the Gaussian
947
+ r """
948
+ Computes the Gaussian expected shortest length, also known as the Gaussian
949
949
heuristic. This estimates the expected norm of the shortest non-zero vector
950
950
in the lattice. The heuristic is independent of the chosen basis.
951
951
952
952
INPUT:
953
- - ``exact_form`` -- boolean (default: ``False``); uses exact formulation
954
- based on gamma function, instead of estimation of the gamma function
953
+ - ``exact_form`` -- boolean (default: ``False``); uses exact formulation based on gamma function, instead of estimation of the gamma function
955
954
956
955
OUTPUT: The Gaussian heuristic described above.
957
956
0 commit comments