@@ -1163,7 +1163,7 @@ def points_of_bounded_height(self, **kwds):
1163
1163
elif R in NumberFields ():
1164
1164
# True for the rational field as well, so check is_RationalField first
1165
1165
field_type = True
1166
- elif (( R is ZZ ) or isinstance (R , Order )) and R .is_integrally_closed (): # Ensure maximal order
1166
+ elif (R is ZZ ) or ( isinstance (R , Order ) and R .is_integrally_closed ()) : # Ensure ring of integers / maximal order
1167
1167
is_ring_of_ints = True
1168
1168
else :
1169
1169
raise NotImplementedError ("self must be a projective space over a number field or a ring of integers" )
@@ -1182,7 +1182,7 @@ def points_of_bounded_height(self, **kwds):
1182
1182
1183
1183
# Field of fraction is the rational field
1184
1184
if fraction_field == QQ :
1185
- return ZZ_points_of_bounded_height (dim , bound )
1185
+ return ZZ_points_of_bounded_height (self , dim , bound )
1186
1186
1187
1187
# Field of fraction is a number field
1188
1188
r1 , r2 = fraction_field .signature ()
@@ -1194,9 +1194,9 @@ def points_of_bounded_height(self, **kwds):
1194
1194
deg = fraction_field .degree ()
1195
1195
1196
1196
if deg == 2 and r == 0 :
1197
- return IQ_points_of_bounded_height (self , fraction_field , dim , bound , normalize = True )
1197
+ return IQ_points_of_bounded_height (self , fraction_field , dim , bound )
1198
1198
1199
- return points_of_bounded_height (self , fraction_field , dim , bound , prec , normalize = True )
1199
+ return points_of_bounded_height (self , fraction_field , dim , bound , prec )
1200
1200
1201
1201
# When R is a field
1202
1202
if field_type :
@@ -1214,7 +1214,7 @@ def points_of_bounded_height(self, **kwds):
1214
1214
1215
1215
return points_of_bounded_height (self , R , dim , bound , prec )
1216
1216
else :
1217
- return QQ_points_of_bounded_height (dim , bound )
1217
+ return QQ_points_of_bounded_height (self , dim , bound )
1218
1218
1219
1219
def affine_patch (self , i , AA = None ):
1220
1220
r"""
0 commit comments