@@ -3370,8 +3370,8 @@ cdef class BinaryCodeClassifier:
33703370 # equal to its minimum element
33713371 v[k] = nu.new_first_smallest_nontrivial(k, W, self .Phi_size * k)
33723372 if not nu.sat_225(k): hh = k + 1
3373- e[k] = 0 # see state 12 and 17
3374- state = 2 # continue down the tree
3373+ e[k] = 0 # see state 12 and 17
3374+ state = 2 # continue down the tree
33753375
33763376 elif state == 5 :
33773377 # same as state 3, but in the case where we haven't yet defined zeta
@@ -3381,8 +3381,7 @@ cdef class BinaryCodeClassifier:
33813381 zb__Lambda_rho[k] = Lambda[k]
33823382 state = 4
33833383
3384- elif state == 6 :
3385- # at this stage, there is no reason to continue downward, so backtrack
3384+ elif state == 6 : # at this stage, there is no reason to continue downward, so backtrack
33863385 j = k
33873386
33883387 # return to the longest ancestor nu[i] of nu that could have a
@@ -3473,7 +3472,7 @@ cdef class BinaryCodeClassifier:
34733472
34743473 state = 10
34753474
3476- elif state == 9 : # nu is a better guess at the canonical label than rho
3475+ elif state == 9 : # nu is a better guess at the canonical label than rho
34773476 rho = PartitionStack(nu)
34783477 k_rho = k
34793478 qzb = 0
@@ -3483,7 +3482,7 @@ cdef class BinaryCodeClassifier:
34833482 zb__Lambda_rho[k+ 1 ] = - 1
34843483 state = 6
34853484
3486- elif state == 10 : # we have an automorphism to process
3485+ elif state == 10 : # we have an automorphism to process
34873486 # increment l
34883487 if l < self .L- 1 : l += 1
34893488 # store information about the automorphism to Omega and Phi
@@ -3504,8 +3503,8 @@ cdef class BinaryCodeClassifier:
35043503 Omega[ii] ^= (1 << j) # so cancel
35053504 j = col_gamma[j] # cellmates
35063505 i += 1
3507- while i < ncols and not Omega[ii]& (1 << i): # find minimal element
3508- i += 1 # of next cell
3506+ while i < ncols and not Omega[ii]& (1 << i): # find minimal element
3507+ i += 1 # of next cell
35093508 i = 0
35103509 jj = self .radix
35113510 while i < nwords:
0 commit comments