@@ -390,7 +390,7 @@ class TateAlgebraIdeal(Ideal_generic):
390
390
if self .ring().base_ring().is_field():
391
391
return self
392
392
gb = self .groebner_basis()
393
- gens = [ g.monic() for g in gb ]
393
+ gens = [g.monic() for g in gb]
394
394
return self .ring().ideal(gens)
395
395
396
396
@@ -432,14 +432,14 @@ def groebner_basis_buchberger(I, prec, py_integral):
432
432
...0000000001*x^2*y + ...1210121020 + O(3^10 * <x, y>),
433
433
...000000001*y^2 + ...210121020*x + O(3^9 * <x, y>) ]
434
434
"""
435
- cdef list gb, rgb, indices, S = [ ]
435
+ cdef list gb, rgb, indices, S = []
436
436
cdef int i, j, l
437
437
cdef TateAlgebraTerm ti, tj, t
438
438
cdef TateAlgebraElement f, g, r, s
439
439
cdef bint do_reduce = True
440
440
cdef bint integral = py_integral
441
441
442
- gb = [ ]
442
+ gb = []
443
443
l = 0
444
444
for f in I.gens():
445
445
if not f:
@@ -550,9 +550,10 @@ def groebner_basis_buchberger(I, prec, py_integral):
550
550
rgb[i] = g._positive_lshift_c(1 )
551
551
_, rgb[i] = g._quo_rem_c(rgb, False , True , True )
552
552
else :
553
- rgb = [ g.monic() for g in rgb ]
553
+ rgb = [g.monic() for g in rgb]
554
554
else :
555
- rgb = [ g * base(g.leading_coefficient().unit_part()).inverse_of_unit() for g in rgb ]
555
+ rgb = [g * base(g.leading_coefficient().unit_part()).inverse_of_unit()
556
+ for g in rgb]
556
557
557
558
rgb.sort(reverse = True )
558
559
return rgb
@@ -638,7 +639,7 @@ cdef TateAlgebraElement regular_reduce(sgb, TateAlgebraTerm s, TateAlgebraElemen
638
639
cdef dict coeffs = { }
639
640
cdef TateAlgebraElement f
640
641
cdef TateAlgebraTerm lt, factor
641
- cdef list ltds = [ (< TateAlgebraElement> (d[1 ]))._terms_c()[0 ] for d in sgb ]
642
+ cdef list ltds = [(< TateAlgebraElement> (d[1 ]))._terms_c()[0 ] for d in sgb]
642
643
cdef list terms = v._terms_c()
643
644
cdef int index = 0
644
645
cdef int i
@@ -711,7 +712,7 @@ cdef TateAlgebraElement reduce(gb, TateAlgebraElement v, stopval):
711
712
cdef dict coeffs = { }
712
713
cdef TateAlgebraElement f
713
714
cdef TateAlgebraTerm lt, factor
714
- cdef list ltds = [ (< TateAlgebraElement> d)._terms_c()[0 ] for d in gb ]
715
+ cdef list ltds = [(< TateAlgebraElement> d)._terms_c()[0 ] for d in gb]
715
716
cdef list terms = v._terms_c()
716
717
cdef int index = 0
717
718
cdef int i
@@ -854,7 +855,7 @@ def groebner_basis_pote(I, prec, verbose=0):
854
855
cdef TateAlgebraTerm term_one = I.ring().monoid_of_terms().one()
855
856
cdef bint integral = not I.ring().base_ring().is_field()
856
857
857
- gb = [ ]
858
+ gb = []
858
859
859
860
for f in sorted (I.gens()):
860
861
sig_check()
@@ -869,10 +870,10 @@ def groebner_basis_pote(I, prec, verbose=0):
869
870
print (" new generator: %s + ..." % f.leading_term())
870
871
# Initial strong Grobner basis:
871
872
# we add signatures
872
- sgb = [ (None , g) for g in gb if g ]
873
+ sgb = [(None , g) for g in gb if g]
873
874
# We compute initial J-pairs
874
875
p = (term_one, f.add_bigoh(prec))
875
- Jpairs = [ ]
876
+ Jpairs = []
876
877
for P in sgb:
877
878
sig_check()
878
879
J = Jpair(p, P)
@@ -881,7 +882,7 @@ def groebner_basis_pote(I, prec, verbose=0):
881
882
sgb.append(p)
882
883
883
884
# For the syzygy criterium
884
- gb0 = [ g.leading_term() for g in gb ]
885
+ gb0 = [g.leading_term() for g in gb]
885
886
886
887
if verbose > 1 :
887
888
print (" %s initial J-pairs" % len (Jpairs))
@@ -1003,7 +1004,7 @@ def groebner_basis_pote(I, prec, verbose=0):
1003
1004
print (" | %s " % g)
1004
1005
1005
1006
if not integral:
1006
- gb = [ f.monic() for f in gb ]
1007
+ gb = [f.monic() for f in gb]
1007
1008
gb.sort(reverse = True )
1008
1009
return gb
1009
1010
@@ -1098,9 +1099,9 @@ def groebner_basis_vapote(I, prec, verbose=0, interrupt_red_with_val=False, inte
1098
1099
cdef list terms
1099
1100
cdef bint do_reduce, integral
1100
1101
term_one = I.ring().monoid_of_terms().one()
1101
- gb = [ ]
1102
+ gb = []
1102
1103
1103
- gens = [ ]
1104
+ gens = []
1104
1105
for f in I.gens():
1105
1106
if f:
1106
1107
val = f.valuation()
@@ -1155,18 +1156,18 @@ def groebner_basis_vapote(I, prec, verbose=0, interrupt_red_with_val=False, inte
1155
1156
1156
1157
# Initial strong Grobner basis:
1157
1158
# we add signatures
1158
- sgb = [ (None , g) for g in gb if g ]
1159
+ sgb = [(None , g) for g in gb if g]
1159
1160
# We compute initial J-pairs
1160
1161
p = (term_one, f.add_bigoh(prec))
1161
- Jpairs = [ ]
1162
+ Jpairs = []
1162
1163
for P in sgb:
1163
1164
J = Jpair(p, P)
1164
1165
if J is not None :
1165
1166
heappush(Jpairs, J)
1166
1167
sgb.append(p)
1167
1168
1168
1169
# For the syzygy criterium
1169
- gb0 = [ g.leading_term() for g in gb ]
1170
+ gb0 = [g.leading_term() for g in gb]
1170
1171
1171
1172
if verbose > 1 :
1172
1173
print (" %s initial J-pairs" % len (Jpairs))
@@ -1254,8 +1255,8 @@ def groebner_basis_vapote(I, prec, verbose=0, interrupt_red_with_val=False, inte
1254
1255
sgb.append(p)
1255
1256
1256
1257
# We forget signatures
1257
- # gb = [ v.monic() for (s,v) in sgb ]
1258
- gb = [ v for (s,v) in sgb ]
1258
+ # gb = [v.monic() for s, v in sgb]
1259
+ gb = [v for s, v in sgb]
1259
1260
if verbose > 1 :
1260
1261
print (" %s elements in GB before minimization" % len (gb))
1261
1262
if verbose > 3 :
@@ -1297,7 +1298,7 @@ def groebner_basis_vapote(I, prec, verbose=0, interrupt_red_with_val=False, inte
1297
1298
for g in gb:
1298
1299
print (" | %s " % g)
1299
1300
if not integral:
1300
- gb = [ f.monic() for f in gb ]
1301
+ gb = [f.monic() for f in gb]
1301
1302
gb.sort(reverse = True )
1302
1303
1303
1304
return gb
0 commit comments