@@ -46,14 +46,14 @@ class DrinfeldModule(Parent, UniqueRepresentation):
46
46
Let `\mathbb{F}_q[T]` be a polynomial ring with coefficients in a
47
47
finite field `\mathbb{F}_q` and let `K` be a field. Fix a ring
48
48
morphism `\gamma: \mathbb{F}_q[T] \to K`; we say that `K` is an
49
- `\mathbb{F}_q[T]`*- field*. Let `K\{\tau\}` be the ring of Ore
49
+ `\mathbb{F}_q[T]`-* field*. Let `K\{\tau\}` be the ring of Ore
50
50
polynomials with coefficients in `K`, whose multiplication is given
51
51
by the rule `\tau \lambda = \lambda^q \tau` for any `\lambda \in K`.
52
52
53
53
A Drinfeld `\mathbb{F}_q[T]`-module over the base
54
54
`\mathbb{F}_q[T]`-field `K` is an `\mathbb{F}_q`-algebra morphism
55
- `\phi: \mathbb{F}_q[T] \to K\{\tau\}` such that `\Im (\phi) \not\subset K`
56
- and `\phi` agrees with `\gamma` on `\mathbb{F}_q`.
55
+ `\phi: \mathbb{F}_q[T] \to K\{\tau\}` such that `\mathrm{Im} (\phi)
56
+ \not\subset K` and `\phi` agrees with `\gamma` on `\mathbb{F}_q`.
57
57
58
58
For `a` in `\mathbb{F}_q[T]`, `\phi(a)` is denoted `\phi_a`.
59
59
@@ -359,7 +359,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
359
359
sage: P * phi(T) == psi(T) * P
360
360
True
361
361
362
- If the input does not define an isogeny, an exception is raised:
362
+ If the input does not define an isogeny, an exception is raised::
363
363
364
364
sage: phi.velu(0)
365
365
Traceback (most recent call last):
@@ -375,8 +375,9 @@ class DrinfeldModule(Parent, UniqueRepresentation):
375
375
The `\mathbb{F}_q[T]`-Drinfeld module `\phi` induces a special left
376
376
`\mathbb{F}_q[T]`-module structure on any field extension `L/K`. Let
377
377
`x \in L` and `a` be in the function ring; the action is defined as
378
- `(a, x) \mapsto \phi_a(x)`. The method :meth:`action` returns an
379
- ``Action`` object representing the Drinfeld module action.
378
+ `(a, x) \mapsto \phi_a(x)`. The method :meth:`action` returns a
379
+ :class:`sage.rings.function_field.drinfeld_modules.action.Action`
380
+ object representing the Drinfeld module action.
380
381
381
382
.. NOTE::
382
383
0 commit comments