Skip to content

Commit 1346b21

Browse files
committed
Fix doc typos
1 parent fbf1e09 commit 1346b21

File tree

2 files changed

+12
-9
lines changed

2 files changed

+12
-9
lines changed

src/sage/categories/drinfeld_modules.py

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ class DrinfeldModules(Category_over_base_ring):
4242
by the rule `\tau \lambda = \lambda^q \tau` for any `\lambda \in K`.
4343
4444
The extension `K`/`\mathbb{F}_q[T]` (represented as an instance of
45-
the class class:`sage.rings.ring_extension.RingExtension`) is the
45+
the class :class:`sage.rings.ring_extension.RingExtension`) is the
4646
*base field* of the category; its defining morphism `\gamma` is
4747
called the *base morphism*.
4848
@@ -577,7 +577,8 @@ def base(self):
577577
Return the base field of this Drinfeld module, viewed as
578578
an algebra over the function ring.
579579
580-
This is an instance of the class class:`sage.rings.ring_extension.RingExtension`.
580+
This is an instance of the class
581+
:class:`sage.rings.ring_extension.RingExtension`.
581582
582583
EXAMPLES::
583584
@@ -630,7 +631,8 @@ def base_over_constants_field(self):
630631
Return the base field, seen as an extension over the constants
631632
field `\mathbb{F}_q`.
632633
633-
This is an instance of the class class:`sage.rings.ring_extension.RingExtension`.
634+
This is an instance of the class
635+
:class:`sage.rings.ring_extension.RingExtension`.
634636
635637
EXAMPLES::
636638

src/sage/rings/function_field/drinfeld_modules/drinfeld_module.py

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -46,14 +46,14 @@ class DrinfeldModule(Parent, UniqueRepresentation):
4646
Let `\mathbb{F}_q[T]` be a polynomial ring with coefficients in a
4747
finite field `\mathbb{F}_q` and let `K` be a field. Fix a ring
4848
morphism `\gamma: \mathbb{F}_q[T] \to K`; we say that `K` is an
49-
`\mathbb{F}_q[T]`*-field*. Let `K\{\tau\}` be the ring of Ore
49+
`\mathbb{F}_q[T]`-*field*. Let `K\{\tau\}` be the ring of Ore
5050
polynomials with coefficients in `K`, whose multiplication is given
5151
by the rule `\tau \lambda = \lambda^q \tau` for any `\lambda \in K`.
5252
5353
A Drinfeld `\mathbb{F}_q[T]`-module over the base
5454
`\mathbb{F}_q[T]`-field `K` is an `\mathbb{F}_q`-algebra morphism
55-
`\phi: \mathbb{F}_q[T] \to K\{\tau\}` such that `\Im(\phi) \not\subset K`
56-
and `\phi` agrees with `\gamma` on `\mathbb{F}_q`.
55+
`\phi: \mathbb{F}_q[T] \to K\{\tau\}` such that `\mathrm{Im}(\phi)
56+
\not\subset K` and `\phi` agrees with `\gamma` on `\mathbb{F}_q`.
5757
5858
For `a` in `\mathbb{F}_q[T]`, `\phi(a)` is denoted `\phi_a`.
5959
@@ -359,7 +359,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
359359
sage: P * phi(T) == psi(T) * P
360360
True
361361
362-
If the input does not define an isogeny, an exception is raised:
362+
If the input does not define an isogeny, an exception is raised::
363363
364364
sage: phi.velu(0)
365365
Traceback (most recent call last):
@@ -375,8 +375,9 @@ class DrinfeldModule(Parent, UniqueRepresentation):
375375
The `\mathbb{F}_q[T]`-Drinfeld module `\phi` induces a special left
376376
`\mathbb{F}_q[T]`-module structure on any field extension `L/K`. Let
377377
`x \in L` and `a` be in the function ring; the action is defined as
378-
`(a, x) \mapsto \phi_a(x)`. The method :meth:`action` returns an
379-
``Action`` object representing the Drinfeld module action.
378+
`(a, x) \mapsto \phi_a(x)`. The method :meth:`action` returns a
379+
:class:`sage.rings.function_field.drinfeld_modules.action.Action`
380+
object representing the Drinfeld module action.
380381
381382
.. NOTE::
382383

0 commit comments

Comments
 (0)