@@ -87,9 +87,11 @@ class LieConformalAlgebraWithStructureCoefficients(
8787 `\lambda`-brackets of the generators::
8888
8989 sage: betagamma_dict = {('b','a'):{0:{('K',0):1}}}
90- sage: V = LieConformalAlgebra(QQ, betagamma_dict, names=('a','b'), weights=(1,0), central_elements=('K',))
90+ sage: V = LieConformalAlgebra(QQ, betagamma_dict, names=('a','b'),
91+ ....: weights=(1,0), central_elements=('K',))
9192 sage: V.category()
92- Category of H-graded finitely generated Lie conformal algebras with basis over Rational Field
93+ Category of H-graded finitely generated Lie conformal algebras
94+ with basis over Rational Field
9395 sage: V.inject_variables()
9496 Defining a, b, K
9597 sage: a.bracket(b)
@@ -150,7 +152,6 @@ def _standardize_s_coeff(s_coeff, index_set, ce, parity=None):
150152 # mypair has a pair of generators
151153 for mypair , v in s_coeff .items ():
152154 # e.g. v = { 0: { (L,2):3, (G,3):1}, 1:{(L,1),2} }
153- v = s_coeff [mypair ]
154155 key = tuple (mypair )
155156 vals = {}
156157 for l in v :
@@ -293,7 +294,10 @@ def structure_coefficients(self):
293294 Finite family {('L', 'L'): ((0, TL), (1, 2*L), (3, 1/2*C))}
294295
295296 sage: lie_conformal_algebras.NeveuSchwarz(QQ).structure_coefficients()
296- Finite family {('G', 'G'): ((0, 2*L), (2, 2/3*C)), ('G', 'L'): ((0, 1/2*TG), (1, 3/2*G)), ('L', 'G'): ((0, TG), (1, 3/2*G)), ('L', 'L'): ((0, TL), (1, 2*L), (3, 1/2*C))}
297+ Finite family {('G', 'G'): ((0, 2*L), (2, 2/3*C)),
298+ ('G', 'L'): ((0, 1/2*TG), (1, 3/2*G)),
299+ ('L', 'G'): ((0, TG), (1, 3/2*G)),
300+ ('L', 'L'): ((0, TL), (1, 2*L), (3, 1/2*C))}
297301 """
298302 return self ._s_coeff
299303
0 commit comments