@@ -115,26 +115,26 @@ def to_coroot_space_morphism(self):
115
115
116
116
sage: R = RootSystem(['A',3]).root_space()
117
117
sage: alpha = R.simple_roots()
118
- sage: f = R.to_coroot_space_morphism()
119
- sage: f(alpha[1])
118
+ sage: f = R.to_coroot_space_morphism() # optional - sage.graphs
119
+ sage: f(alpha[1]) # optional - sage.graphs
120
120
alphacheck[1]
121
- sage: f(alpha[1]+ alpha[2])
121
+ sage: f(alpha[1] + alpha[2]) # optional - sage.graphs
122
122
alphacheck[1] + alphacheck[2]
123
123
124
124
sage: R = RootSystem(['A',3]).root_lattice()
125
125
sage: alpha = R.simple_roots()
126
- sage: f = R.to_coroot_space_morphism()
127
- sage: f(alpha[1])
126
+ sage: f = R.to_coroot_space_morphism() # optional - sage.graphs
127
+ sage: f(alpha[1]) # optional - sage.graphs
128
128
alphacheck[1]
129
- sage: f(alpha[1]+ alpha[2])
129
+ sage: f(alpha[1] + alpha[2]) # optional - sage.graphs
130
130
alphacheck[1] + alphacheck[2]
131
131
132
132
sage: S = RootSystem(['G',2]).root_space()
133
133
sage: alpha = S.simple_roots()
134
- sage: f = S.to_coroot_space_morphism()
135
- sage: f(alpha[1])
134
+ sage: f = S.to_coroot_space_morphism() # optional - sage.graphs
135
+ sage: f(alpha[1]) # optional - sage.graphs
136
136
alphacheck[1]
137
- sage: f(alpha[1]+ alpha[2])
137
+ sage: f(alpha[1] + alpha[2]) # optional - sage.graphs
138
138
alphacheck[1] + 3*alphacheck[2]
139
139
"""
140
140
R = self .base_ring ()
@@ -194,7 +194,7 @@ def _to_classical_on_basis(self, i):
194
194
EXAMPLES::
195
195
196
196
sage: L = RootSystem(["A",3,1]).root_space()
197
- sage: L._to_classical_on_basis(0)
197
+ sage: L._to_classical_on_basis(0) # optional - sage.graphs
198
198
-alpha[1] - alpha[2] - alpha[3]
199
199
sage: L._to_classical_on_basis(1)
200
200
alpha[1]
@@ -258,7 +258,7 @@ def scalar(self, lambdacheck):
258
258
[ 0 -1 2 -1]
259
259
[ 0 0 -2 2]
260
260
261
- sage: L.cartan_type().cartan_matrix()
261
+ sage: L.cartan_type().cartan_matrix() # optional - sage.graphs
262
262
[ 2 -1 0 0]
263
263
[-1 2 -1 0]
264
264
[ 0 -1 2 -1]
@@ -278,12 +278,12 @@ def is_positive_root(self):
278
278
279
279
EXAMPLES::
280
280
281
- sage: R= RootSystem(['A',3,1]).root_space()
282
- sage: B= R.basis()
283
- sage: w= B[0]+ B[3]
281
+ sage: R = RootSystem(['A',3,1]).root_space()
282
+ sage: B = R.basis()
283
+ sage: w = B[0] + B[3]
284
284
sage: w.is_positive_root()
285
285
True
286
- sage: w= B[1]- B[2]
286
+ sage: w = B[1] - B[2]
287
287
sage: w.is_positive_root()
288
288
False
289
289
"""
@@ -304,20 +304,20 @@ def associated_coroot(self):
304
304
305
305
sage: L = RootSystem(["B", 3]).root_space()
306
306
sage: alpha = L.simple_roots()
307
- sage: alpha[1].associated_coroot()
307
+ sage: alpha[1].associated_coroot() # optional - sage.graphs
308
308
alphacheck[1]
309
- sage: alpha[1].associated_coroot().parent()
309
+ sage: alpha[1].associated_coroot().parent() # optional - sage.graphs
310
310
Coroot space over the Rational Field of the Root system of type ['B', 3]
311
311
312
- sage: L.highest_root()
312
+ sage: L.highest_root() # optional - sage.graphs
313
313
alpha[1] + 2*alpha[2] + 2*alpha[3]
314
- sage: L.highest_root().associated_coroot()
314
+ sage: L.highest_root().associated_coroot() # optional - sage.graphs
315
315
alphacheck[1] + 2*alphacheck[2] + alphacheck[3]
316
316
317
317
sage: alpha = RootSystem(["B", 3]).root_lattice().simple_roots()
318
- sage: alpha[1].associated_coroot()
318
+ sage: alpha[1].associated_coroot() # optional - sage.graphs
319
319
alphacheck[1]
320
- sage: alpha[1].associated_coroot().parent()
320
+ sage: alpha[1].associated_coroot().parent() # optional - sage.graphs
321
321
Coroot lattice of the Root system of type ['B', 3]
322
322
323
323
"""
@@ -328,7 +328,7 @@ def associated_coroot(self):
328
328
329
329
def quantum_root (self ):
330
330
r"""
331
- Returns True if ``self`` is a quantum root and False otherwise.
331
+ Return `` True`` if ``self`` is a quantum root and `` False`` otherwise.
332
332
333
333
INPUT:
334
334
0 commit comments