Skip to content

Commit 1eb24e6

Browse files
committed
src/doc/*/tutorial/tour_algebra.rst: update an example
The output from one of these examples has changed slightly after a Maxima upgrade. We add ".expand()" on the end of it to ensure that the answer is consistent.
1 parent f7a1a90 commit 1eb24e6

File tree

9 files changed

+27
-36
lines changed

9 files changed

+27
-36
lines changed

src/doc/de/tutorial/tour_algebra.rst

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -168,11 +168,10 @@ berechnet:
168168

169169
::
170170

171-
sage: s = var("s")
172-
sage: t = var("t")
171+
sage: s,t = SR.var("s,t")
173172
sage: f = t^2*exp(t) - sin(t)
174-
sage: f.laplace(t,s)
175-
-1/(s^2 + 1) + 2/(s - 1)^3
173+
sage: f.laplace(t,s).expand()
174+
2/(s^3 - 3*s^2 + 3*s - 1) - 1/(s^2 + 1)
176175

177176
Hier ist ein komplizierteres Beispiel. Die Verschiebung des
178177
Gleichgewichts einer verkoppelten Feder, die an der linken Wand

src/doc/en/tutorial/tour_algebra.rst

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -178,11 +178,10 @@ You can compute Laplace transforms also; the Laplace transform of
178178

179179
::
180180

181-
sage: s = var("s")
182-
sage: t = var("t")
181+
sage: s,t = SR.var("s,t")
183182
sage: f = t^2*exp(t) - sin(t)
184-
sage: f.laplace(t,s)
185-
-1/(s^2 + 1) + 2/(s - 1)^3
183+
sage: f.laplace(t,s).expand()
184+
2/(s^3 - 3*s^2 + 3*s - 1) - 1/(s^2 + 1)
186185

187186
Here is a more involved example. The displacement from equilibrium
188187
(respectively) for a coupled spring attached to a wall on the left

src/doc/es/tutorial/tour_algebra.rst

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -160,11 +160,10 @@ de :math:`t^2e^t -\sin(t)` se calcula como sigue:
160160

161161
::
162162

163-
sage: s = var("s")
164-
sage: t = var("t")
163+
sage: s,t = SR.var("s,t")
165164
sage: f = t^2*exp(t) - sin(t)
166-
sage: f.laplace(t,s)
167-
-1/(s^2 + 1) + 2/(s - 1)^3
165+
sage: f.laplace(t,s).expand()
166+
2/(s^3 - 3*s^2 + 3*s - 1) - 1/(s^2 + 1)
168167

169168
Veamos un ejemplo más complicado. El desplazamiento desde el punto de equilibrio
170169
de dos resortes acoplados, sujetos a una pared a la izquierda

src/doc/fr/tutorial/tour_algebra.rst

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -145,11 +145,10 @@ transformée de Laplace de :math:`t^2e^t -\sin(t)` s'obtient comme suit :
145145

146146
::
147147

148-
sage: s = var("s")
149-
sage: t = var("t")
148+
sage: s,t = SR.var("s,t")
150149
sage: f = t^2*exp(t) - sin(t)
151-
sage: f.laplace(t,s)
152-
-1/(s^2 + 1) + 2/(s - 1)^3
150+
sage: f.laplace(t,s).expand()
151+
2/(s^3 - 3*s^2 + 3*s - 1) - 1/(s^2 + 1)
153152

154153
Voici un exemple plus élaboré. L'élongation à partir du point
155154
d'équilibre de ressorts couplés attachés à gauche à un mur

src/doc/it/tutorial/tour_algebra.rst

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -146,11 +146,10 @@ Si può anche calcolare la trasformata di Laplace; la trasformata di Laplace di
146146

147147
::
148148

149-
sage: s = var("s")
150-
sage: t = var("t")
149+
sage: s,t = SR.var("s,t")
151150
sage: f = t^2*exp(t) - sin(t)
152-
sage: f.laplace(t,s)
153-
-1/(s^2 + 1) + 2/(s - 1)^3
151+
sage: f.laplace(t,s).expand()
152+
2/(s^3 - 3*s^2 + 3*s - 1) - 1/(s^2 + 1)
154153

155154
Il successivo è un esempio più articolato. Lo scostamento dall'equilibrio
156155
(rispettivamente) per due molle accoppiate fissate ad un muro a sinistra

src/doc/ja/tutorial/tour_algebra.rst

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -172,11 +172,10 @@ Sageを使って常微分方程式を研究することもできる. :math:`x'
172172

173173
::
174174

175-
sage: s = var("s")
176-
sage: t = var("t")
175+
sage: s,t = SR.var("s,t")
177176
sage: f = t^2*exp(t) - sin(t)
178-
sage: f.laplace(t,s)
179-
-1/(s^2 + 1) + 2/(s - 1)^3
177+
sage: f.laplace(t,s).expand()
178+
2/(s^3 - 3*s^2 + 3*s - 1) - 1/(s^2 + 1)
180179

181180

182181
もう少し手間のかかる問題を考えてみよう.

src/doc/pt/tutorial/tour_algebra.rst

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -165,11 +165,10 @@ Laplace de :math:`t^2e^t -\sin(t)` é calculada da seguinte forma:
165165

166166
::
167167

168-
sage: s = var("s")
169-
sage: t = var("t")
168+
sage: s,t = SR.var("s,t")
170169
sage: f = t^2*exp(t) - sin(t)
171-
sage: f.laplace(t,s)
172-
-1/(s^2 + 1) + 2/(s - 1)^3
170+
sage: f.laplace(t,s).expand()
171+
2/(s^3 - 3*s^2 + 3*s - 1) - 1/(s^2 + 1)
173172

174173
A seguir, um exemplo mais complicado. O deslocamento, com respeito à
175174
posição de equilíbrio, de duas massas presas a uma parede através de

src/doc/ru/tutorial/tour_algebra.rst

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -162,11 +162,10 @@ Sage может использоваться для решения диффер
162162

163163
::
164164

165-
sage: s = var("s")
166-
sage: t = var("t")
165+
sage: s,t = SR.var("s,t")
167166
sage: f = t^2*exp(t) - sin(t)
168-
sage: f.laplace(t,s)
169-
-1/(s^2 + 1) + 2/(s - 1)^3
167+
sage: f.laplace(t,s).expand()
168+
2/(s^3 - 3*s^2 + 3*s - 1) - 1/(s^2 + 1)
170169

171170
Приведем более сложный пример. Отклонение от положения равновесия для пары
172171
пружин, прикрепленных к стене слева,

src/doc/zh/tutorial/tour_algebra.rst

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -165,11 +165,10 @@ Sage 可以对许多函数进行微分和积分。
165165

166166
::
167167

168-
sage: s = var("s")
169-
sage: t = var("t")
168+
sage: s,t = SR.var("s,t")
170169
sage: f = t^2*exp(t) - sin(t)
171-
sage: f.laplace(t,s)
172-
-1/(s^2 + 1) + 2/(s - 1)^3
170+
sage: f.laplace(t,s).expand()
171+
2/(s^3 - 3*s^2 + 3*s - 1) - 1/(s^2 + 1)
173172

174173
这里是一个更复杂的示例。左侧连接到墙上的耦合弹簧的平衡位移
175174

0 commit comments

Comments
 (0)