@@ -47,7 +47,7 @@ class FiniteField_prime_modn(FiniteField_generic, integer_mod_ring.IntegerModRin
47
47
sage: FiniteField(3)
48
48
Finite Field of size 3
49
49
50
- sage: FiniteField(next_prime(1000)) # optional - sage.rings.finite_rings
50
+ sage: FiniteField(next_prime(1000)) # needs sage.rings.finite_rings
51
51
Finite Field of size 1009
52
52
"""
53
53
def __init__ (self , p , check = True , modulus = None ):
@@ -104,32 +104,35 @@ def _coerce_map_from_(self, S):
104
104
5
105
105
sage: 12 % 7
106
106
5
107
- sage: ZZ.residue_field(7).hom(GF(7))(1) # See trac 11319 # optional - sage.rings.finite_rings
107
+
108
+ sage: ZZ.residue_field(7).hom(GF(7))(1) # See trac 11319 # needs sage.rings.finite_rings
108
109
1
109
- sage: K.<w> = QuadraticField(337) # See trac 11319
110
- sage: pp = K.ideal(13).factor()[0][0]
111
- sage: RF13 = K.residue_field(pp)
112
- sage: RF13.hom([GF(13)(1)])
110
+
111
+ sage: # needs sage.rings.finite_rings sage.rings.number_field
112
+ sage: K.<w> = QuadraticField(337) # See trac 11319 # needs sage.rings.number_field
113
+ sage: pp = K.ideal(13).factor()[0][0] # needs sage.rings.number_field
114
+ sage: RF13 = K.residue_field(pp) # needs sage.rings.number_field
115
+ sage: RF13.hom([GF(13)(1)]) # needs sage.rings.number_field
113
116
Ring morphism:
114
117
From: Residue field of Fractional ideal (-w - 18)
115
118
To: Finite Field of size 13
116
119
Defn: 1 |--> 1
117
120
118
121
Check that :trac:`19573` is resolved::
119
122
120
- sage: Integers(9).hom(GF(3)) # optional - sage.rings.finite_rings
123
+ sage: Integers(9).hom(GF(3)) # needs sage.rings.finite_rings
121
124
Natural morphism:
122
125
From: Ring of integers modulo 9
123
126
To: Finite Field of size 3
124
127
125
- sage: Integers(9).hom(GF(5)) # optional - sage.rings.finite_rings
128
+ sage: Integers(9).hom(GF(5)) # needs sage.rings.finite_rings
126
129
Traceback (most recent call last):
127
130
...
128
131
TypeError: natural coercion morphism from Ring of integers modulo 9 to Finite Field of size 5 not defined
129
132
130
133
There is no coercion from a `p`-adic ring to its residue field::
131
134
132
- sage: GF(3).has_coerce_map_from(Zp(3))
135
+ sage: GF(3).has_coerce_map_from(Zp(3)) # needs sage.rings.padics
133
136
False
134
137
"""
135
138
if S is int :
@@ -155,6 +158,7 @@ def _convert_map_from_(self, R):
155
158
156
159
EXAMPLES::
157
160
161
+ sage: # needs sage.rings.padics
158
162
sage: GF(3).convert_map_from(Qp(3))
159
163
Reduction morphism:
160
164
From: 3-adic Field with capped relative precision 20
@@ -201,7 +205,8 @@ def is_prime_field(self):
201
205
sage: k.is_prime_field()
202
206
True
203
207
204
- sage: k.<a> = GF(3^2) # optional - sage.rings.finite_rings
208
+ sage: # needs sage.rings.finite_rings
209
+ sage: k.<a> = GF(3^2)
205
210
sage: k.is_prime_field()
206
211
False
207
212
"""
@@ -271,7 +276,9 @@ def gen(self, n=0):
271
276
sage: k = GF(13)
272
277
sage: k.gen()
273
278
1
274
- sage: k = GF(1009, modulus="primitive") # optional - sage.rings.finite_rings
279
+
280
+ sage: # needs sage.rings.finite_rings
281
+ sage: k = GF(1009, modulus="primitive")
275
282
sage: k.gen() # this gives a primitive element
276
283
11
277
284
sage: k.gen(1)
@@ -304,7 +311,8 @@ def __iter__(self):
304
311
We can even start iterating over something that would be too big
305
312
to actually enumerate::
306
313
307
- sage: K = GF(next_prime(2^256)) # optional - sage.rings.finite_rings
314
+ sage: # needs sage.rings.finite_rings
315
+ sage: K = GF(next_prime(2^256))
308
316
sage: all = iter(K)
309
317
sage: next(all)
310
318
0
0 commit comments