Skip to content

Commit 1f7e48a

Browse files
author
Matthias Koeppe
committed
Update # optional/needs
1 parent a44af4d commit 1f7e48a

File tree

1 file changed

+20
-12
lines changed

1 file changed

+20
-12
lines changed

src/sage/rings/finite_rings/finite_field_prime_modn.py

Lines changed: 20 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ class FiniteField_prime_modn(FiniteField_generic, integer_mod_ring.IntegerModRin
4747
sage: FiniteField(3)
4848
Finite Field of size 3
4949
50-
sage: FiniteField(next_prime(1000)) # optional - sage.rings.finite_rings
50+
sage: FiniteField(next_prime(1000)) # needs sage.rings.finite_rings
5151
Finite Field of size 1009
5252
"""
5353
def __init__(self, p, check=True, modulus=None):
@@ -104,32 +104,35 @@ def _coerce_map_from_(self, S):
104104
5
105105
sage: 12 % 7
106106
5
107-
sage: ZZ.residue_field(7).hom(GF(7))(1) # See trac 11319 # optional - sage.rings.finite_rings
107+
108+
sage: ZZ.residue_field(7).hom(GF(7))(1) # See trac 11319 # needs sage.rings.finite_rings
108109
1
109-
sage: K.<w> = QuadraticField(337) # See trac 11319
110-
sage: pp = K.ideal(13).factor()[0][0]
111-
sage: RF13 = K.residue_field(pp)
112-
sage: RF13.hom([GF(13)(1)])
110+
111+
sage: # needs sage.rings.finite_rings sage.rings.number_field
112+
sage: K.<w> = QuadraticField(337) # See trac 11319 # needs sage.rings.number_field
113+
sage: pp = K.ideal(13).factor()[0][0] # needs sage.rings.number_field
114+
sage: RF13 = K.residue_field(pp) # needs sage.rings.number_field
115+
sage: RF13.hom([GF(13)(1)]) # needs sage.rings.number_field
113116
Ring morphism:
114117
From: Residue field of Fractional ideal (-w - 18)
115118
To: Finite Field of size 13
116119
Defn: 1 |--> 1
117120
118121
Check that :trac:`19573` is resolved::
119122
120-
sage: Integers(9).hom(GF(3)) # optional - sage.rings.finite_rings
123+
sage: Integers(9).hom(GF(3)) # needs sage.rings.finite_rings
121124
Natural morphism:
122125
From: Ring of integers modulo 9
123126
To: Finite Field of size 3
124127
125-
sage: Integers(9).hom(GF(5)) # optional - sage.rings.finite_rings
128+
sage: Integers(9).hom(GF(5)) # needs sage.rings.finite_rings
126129
Traceback (most recent call last):
127130
...
128131
TypeError: natural coercion morphism from Ring of integers modulo 9 to Finite Field of size 5 not defined
129132
130133
There is no coercion from a `p`-adic ring to its residue field::
131134
132-
sage: GF(3).has_coerce_map_from(Zp(3))
135+
sage: GF(3).has_coerce_map_from(Zp(3)) # needs sage.rings.padics
133136
False
134137
"""
135138
if S is int:
@@ -155,6 +158,7 @@ def _convert_map_from_(self, R):
155158
156159
EXAMPLES::
157160
161+
sage: # needs sage.rings.padics
158162
sage: GF(3).convert_map_from(Qp(3))
159163
Reduction morphism:
160164
From: 3-adic Field with capped relative precision 20
@@ -201,7 +205,8 @@ def is_prime_field(self):
201205
sage: k.is_prime_field()
202206
True
203207
204-
sage: k.<a> = GF(3^2) # optional - sage.rings.finite_rings
208+
sage: # needs sage.rings.finite_rings
209+
sage: k.<a> = GF(3^2)
205210
sage: k.is_prime_field()
206211
False
207212
"""
@@ -271,7 +276,9 @@ def gen(self, n=0):
271276
sage: k = GF(13)
272277
sage: k.gen()
273278
1
274-
sage: k = GF(1009, modulus="primitive") # optional - sage.rings.finite_rings
279+
280+
sage: # needs sage.rings.finite_rings
281+
sage: k = GF(1009, modulus="primitive")
275282
sage: k.gen() # this gives a primitive element
276283
11
277284
sage: k.gen(1)
@@ -304,7 +311,8 @@ def __iter__(self):
304311
We can even start iterating over something that would be too big
305312
to actually enumerate::
306313
307-
sage: K = GF(next_prime(2^256)) # optional - sage.rings.finite_rings
314+
sage: # needs sage.rings.finite_rings
315+
sage: K = GF(next_prime(2^256))
308316
sage: all = iter(K)
309317
sage: next(all)
310318
0

0 commit comments

Comments
 (0)