@@ -1109,11 +1109,11 @@ def moebius_function_matrix(self, algorithm='cython'):
1109
1109
m [(i , k )] = - ZZ .sum (m [(j , k )]
1110
1110
for j in available
1111
1111
if k in greater_than [j ])
1112
- M = matrix (ZZ , n , n , m , sparse = True )
1112
+ M = matrix (ZZ , n , n , m , sparse = True ) # noqa: F821
1113
1113
elif algorithm == "matrix" :
1114
1114
M = self .lequal_matrix ().inverse_of_unit ()
1115
1115
elif algorithm == "cython" :
1116
- M = moebius_matrix_fast (self ._leq_storage )
1116
+ M = moebius_matrix_fast (self ._leq_storage ) # noqa: F821
1117
1117
else :
1118
1118
raise ValueError ("unknown algorithm" )
1119
1119
self ._moebius_function_matrix = M
@@ -1187,7 +1187,7 @@ def coxeter_transformation(self, algorithm='cython'):
1187
1187
if algorithm == 'matrix' :
1188
1188
return - self .lequal_matrix () * self .moebius_function_matrix ().transpose ()
1189
1189
elif algorithm == 'cython' :
1190
- return coxeter_matrix_fast (self ._leq_storage )
1190
+ return coxeter_matrix_fast (self ._leq_storage ) # noqa: F821
1191
1191
else :
1192
1192
raise ValueError ("unknown algorithm" )
1193
1193
@@ -1324,11 +1324,11 @@ def _leq_matrix_boolean(self):
1324
1324
Finite Field of size 2
1325
1325
"""
1326
1326
n = self .order ()
1327
- R = GF (2 )
1327
+ R = GF (2 ) # noqa: F821
1328
1328
one = R .one ()
1329
1329
greater_than = self ._leq_storage
1330
1330
D = {(i , j ): one for i in range (n ) for j in greater_than [i ]}
1331
- M = matrix (R , n , n , D , sparse = True )
1331
+ M = matrix (R , n , n , D , sparse = True ) # noqa: F821
1332
1332
M .set_immutable ()
1333
1333
return M
1334
1334
@@ -1359,7 +1359,7 @@ def _leq_matrix(self):
1359
1359
n = self .order ()
1360
1360
greater_than = self ._leq_storage
1361
1361
D = {(i , j ): 1 for i in range (n ) for j in greater_than [i ]}
1362
- return matrix (ZZ , n , n , D , sparse = True , immutable = True )
1362
+ return matrix (ZZ , n , n , D , sparse = True , immutable = True ) # noqa: F821
1363
1363
1364
1364
def lequal_matrix (self , boolean = False ):
1365
1365
r"""
@@ -1544,7 +1544,7 @@ def _meet(self):
1544
1544
self ._meet_semilattice_failure = ()
1545
1545
n = self .cardinality ()
1546
1546
if n == 0 :
1547
- return matrix (0 )
1547
+ return matrix (0 ) # noqa: F821
1548
1548
meet = [[- 1 for x in range (n )] for x in range (n )]
1549
1549
lc = [self .neighbors_in (x ) for x in range (n )] # Lc = lower covers
1550
1550
@@ -1564,7 +1564,7 @@ def _meet(self):
1564
1564
meet [y ][x ] = q
1565
1565
if q == - 1 :
1566
1566
self ._meet_semilattice_failure += ((x , y ),)
1567
- return matrix (ZZ , meet )
1567
+ return matrix (ZZ , meet ) # noqa: F821
1568
1568
1569
1569
def meet_matrix (self ):
1570
1570
r"""
@@ -1708,7 +1708,7 @@ def _join(self):
1708
1708
self ._join_semilattice_failure = ()
1709
1709
n = self .cardinality ()
1710
1710
if n == 0 :
1711
- return matrix (0 )
1711
+ return matrix (0 ) # noqa: F821
1712
1712
join = [[- 1 for x in range (n )] for x in range (n )]
1713
1713
uc = [self .neighbors_out (x ) for x in range (n )] # uc = upper covers
1714
1714
@@ -1729,7 +1729,7 @@ def _join(self):
1729
1729
if q == - 1 :
1730
1730
self ._join_semilattice_failure += ((x , y ),)
1731
1731
1732
- return matrix (ZZ , join )
1732
+ return matrix (ZZ , join ) # noqa: F821
1733
1733
1734
1734
def join_matrix (self ):
1735
1735
r"""
@@ -3143,7 +3143,7 @@ def atoms_of_congruence_lattice(self):
3143
3143
3144
3144
return min_congruences
3145
3145
3146
- def congruence (self , parts , start = None , stop_pairs = [] ):
3146
+ def congruence (self , parts , start = None , stop_pairs = None ):
3147
3147
"""
3148
3148
Return the congruence ``start`` "extended" by ``parts``.
3149
3149
@@ -3207,6 +3207,9 @@ def congruence(self, parts, start=None, stop_pairs=[]):
3207
3207
from sage .sets .disjoint_set import DisjointSet
3208
3208
from copy import copy
3209
3209
3210
+ if stop_pairs is None :
3211
+ stop_pairs = []
3212
+
3210
3213
n = self .order ()
3211
3214
mt = self .meet_matrix ()
3212
3215
jn = self .join_matrix ()
0 commit comments