@@ -1708,14 +1708,14 @@ cdef class IntegerMod_abstract(FiniteRingElement):
1708
1708
if other._modulus.int64 == 1 : return self
1709
1709
new_modulus = self ._modulus.int64 * other._modulus.int64
1710
1710
if new_modulus < INTEGER_MOD_INT32_LIMIT:
1711
- return self .__crt (other)
1711
+ return self ._crt (other)
1712
1712
1713
1713
elif new_modulus < INTEGER_MOD_INT64_LIMIT:
1714
1714
if not isinstance (self , IntegerMod_int64):
1715
1715
self = IntegerMod_int64(self ._parent, self .lift())
1716
1716
if not isinstance (other, IntegerMod_int64):
1717
1717
other = IntegerMod_int64(other._parent, other.lift())
1718
- return self .__crt (other)
1718
+ return self ._crt (other)
1719
1719
1720
1720
if not isinstance (self , IntegerMod_gmp):
1721
1721
if self ._modulus.int64 == 1 : return other
@@ -1725,7 +1725,7 @@ cdef class IntegerMod_abstract(FiniteRingElement):
1725
1725
if other._modulus.int64 == 1 : return self
1726
1726
other = IntegerMod_gmp(other._parent, other.lift())
1727
1727
1728
- return self .__crt (other)
1728
+ return self ._crt (other)
1729
1729
1730
1730
def additive_order (self ):
1731
1731
r """
@@ -2132,7 +2132,7 @@ cdef class IntegerMod_gmp(IntegerMod_abstract):
2132
2132
"""
2133
2133
return self.lift().gcd(self.modulus()) == 1
2134
2134
2135
- def __crt (IntegerMod_gmp self, IntegerMod_gmp other):
2135
+ def _crt (IntegerMod_gmp self, IntegerMod_gmp other):
2136
2136
cdef IntegerMod_gmp lift, x
2137
2137
cdef sage.rings.integer.Integer modulus, other_modulus
2138
2138
@@ -2521,7 +2521,7 @@ cdef class IntegerMod_int(IntegerMod_abstract):
2521
2521
"""
2522
2522
return gcd_int(self .ivalue, self ._modulus.int32) == 1
2523
2523
2524
- def __crt (IntegerMod_int self , IntegerMod_int other ):
2524
+ def _crt (IntegerMod_int self , IntegerMod_int other ):
2525
2525
"""
2526
2526
Use the Chinese Remainder Theorem to find an element of the
2527
2527
integers modulo the product of the moduli that reduces to self and
@@ -3346,7 +3346,7 @@ cdef class IntegerMod_int64(IntegerMod_abstract):
3346
3346
"""
3347
3347
return gcd_int64(self .ivalue, self ._modulus.int64) == 1
3348
3348
3349
- def __crt (IntegerMod_int64 self , IntegerMod_int64 other ):
3349
+ def _crt (IntegerMod_int64 self , IntegerMod_int64 other ):
3350
3350
"""
3351
3351
Use the Chinese Remainder Theorem to find an element of the
3352
3352
integers modulo the product of the moduli that reduces to self and
0 commit comments