@@ -4106,33 +4106,6 @@ def isomorphism_type_info_simple_group(self):
4106
4106
else :
4107
4107
raise TypeError ("group must be simple" )
4108
4108
4109
- def minimal_normal_subgroups (self ):
4110
- """
4111
- Return a list containing those nontrivial normal subgroups of the group that are minimal among the nontrivial normal subgroups.
4112
-
4113
- EXAMPLES::
4114
-
4115
- sage: G = PermutationGroup([(1,2,3),(4,5)])
4116
- sage: G.minimal_normal_subgroups()
4117
- [Subgroup generated by [(4,5)] of (Permutation Group with generators [(4,5), (1,2,3)]),
4118
- Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(4,5), (1,2,3)])]
4119
- """
4120
- return [self .subgroup (gap_group = gap_subgroup ) for gap_subgroup in self .gap ().MinimalNormalSubgroups ()]
4121
-
4122
- def maximal_normal_subgroups (self ):
4123
- """
4124
- Return a list containing those proper normal subgroups of the group G that are maximal among the proper normal subgroups.
4125
- Gives error if G/G' is infinite, yielding infinitely many maximal normal subgroups.
4126
-
4127
- EXAMPLES::
4128
-
4129
- sage: G = PermutationGroup([(1,2,3),(4,5)])
4130
- sage: G.maximal_normal_subgroups()
4131
- [Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(4,5), (1,2,3)]),
4132
- Subgroup generated by [(4,5)] of (Permutation Group with generators [(4,5), (1,2,3)])]
4133
- """
4134
- return [self .subgroup (gap_group = gap_subgroup ) for gap_subgroup in self .gap ().MaximalNormalSubgroups ()]
4135
-
4136
4109
###################### Boolean tests #####################
4137
4110
4138
4111
def is_abelian (self ):
0 commit comments