@@ -68,22 +68,22 @@ def mean(v):
68
68
69
69
EXAMPLES::
70
70
71
- sage: mean([pi, e]) # optional - sage.symbolic
71
+ sage: mean([pi, e]) # needs sage.symbolic
72
72
doctest:warning...
73
73
DeprecationWarning: sage.stats.basic_stats.mean is deprecated;
74
74
use numpy.mean or numpy.nanmean instead
75
75
See https://github.com/sagemath/sage/issues/29662 for details.
76
76
1/2*pi + 1/2*e
77
- sage: mean([]) # optional - sage.symbolic
77
+ sage: mean([]) # needs sage.symbolic
78
78
NaN
79
- sage: mean([I, sqrt(2), 3/5]) # optional - sage.symbolic
79
+ sage: mean([I, sqrt(2), 3/5]) # needs sage.symbolic
80
80
1/3*sqrt(2) + 1/3*I + 1/5
81
81
sage: mean([RIF(1.0103,1.0103), RIF(2)])
82
82
1.5051500000000000?
83
83
sage: mean(range(4))
84
84
3/2
85
- sage: v = stats.TimeSeries([1..100]) # optional - numpy
86
- sage: mean(v) # optional - numpy
85
+ sage: v = stats.TimeSeries([1..100]) # needs numpy
86
+ sage: mean(v) # needs numpy
87
87
50.5
88
88
"""
89
89
deprecation (29662 , 'sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead' )
@@ -198,8 +198,8 @@ def std(v, bias=False):
198
198
199
199
EXAMPLES::
200
200
201
- sage: # optional - sage.symbolic
202
- sage: std([1..6], bias=True) # optional - sage.symbolic
201
+ sage: # needs sage.symbolic
202
+ sage: std([1..6], bias=True)
203
203
doctest:warning...
204
204
DeprecationWarning: sage.stats.basic_stats.std is deprecated;
205
205
use numpy.std or numpy.nanstd instead
@@ -213,25 +213,25 @@ def std(v, bias=False):
213
213
use numpy.mean or numpy.nanmean instead
214
214
See https://github.com/sagemath/sage/issues/29662 for details.
215
215
1/2*sqrt(35/3)
216
- sage: std([1..6], bias=False) # optional - sage.symbolic
216
+ sage: std([1..6], bias=False)
217
217
sqrt(7/2)
218
- sage: std([e, pi]) # optional - sage.symbolic
218
+ sage: std([e, pi])
219
219
sqrt(1/2)*abs(pi - e)
220
- sage: std([]) # optional - sage.symbolic
220
+ sage: std([])
221
221
NaN
222
- sage: std([I, sqrt(2), 3/5]) # optional - sage.symbolic
222
+ sage: std([I, sqrt(2), 3/5])
223
223
1/15*sqrt(1/2)*sqrt((10*sqrt(2) - 5*I - 3)^2
224
224
+ (5*sqrt(2) - 10*I + 3)^2 + (5*sqrt(2) + 5*I - 6)^2)
225
225
sage: std([RIF(1.0103, 1.0103), RIF(2)])
226
226
0.6998235813403261?
227
227
228
- sage: # optional - numpy
229
- sage: import numpy # optional - numpy
230
- sage: x = numpy.array([1,2,3,4,5]) # optional - numpy
231
- sage: std(x, bias=False) # optional - numpy
228
+ sage: # needs numpy
229
+ sage: import numpy
230
+ sage: x = numpy.array([1,2,3,4,5])
231
+ sage: std(x, bias=False)
232
232
1.5811388300841898
233
- sage: x = stats.TimeSeries([1..100]) # optional - numpy
234
- sage: std(x) # optional - numpy
233
+ sage: x = stats.TimeSeries([1..100])
234
+ sage: std(x)
235
235
29.011491975882016
236
236
237
237
TESTS::
@@ -294,18 +294,18 @@ def variance(v, bias=False):
294
294
7/2
295
295
sage: variance([1..6], bias=True)
296
296
35/12
297
- sage: variance([e, pi]) # optional - sage.symbolic
297
+ sage: variance([e, pi]) # needs sage.symbolic
298
298
1/2*(pi - e)^2
299
299
sage: variance([])
300
300
NaN
301
- sage: variance([I, sqrt(2), 3/5]) # optional - sage.symbolic
301
+ sage: variance([I, sqrt(2), 3/5]) # needs sage.symbolic
302
302
1/450*(10*sqrt(2) - 5*I - 3)^2 + 1/450*(5*sqrt(2) - 10*I + 3)^2
303
303
+ 1/450*(5*sqrt(2) + 5*I - 6)^2
304
304
sage: variance([RIF(1.0103, 1.0103), RIF(2)])
305
305
0.4897530450000000?
306
- sage: import numpy # optional - numpy
307
- sage: x = numpy.array([1,2,3,4,5]) # optional - numpy
308
- sage: variance(x, bias=False) # optional - numpy
306
+ sage: import numpy # needs numpy
307
+ sage: x = numpy.array([1,2,3,4,5]) # needs numpy
308
+ sage: variance(x, bias=False) # needs numpy
309
309
2.5
310
310
sage: x = stats.TimeSeries([1..100])
311
311
sage: variance(x)
@@ -398,11 +398,11 @@ def median(v):
398
398
use numpy.median or numpy.nanmedian instead
399
399
See https://github.com/sagemath/sage/issues/29662 for details.
400
400
3
401
- sage: median([e, pi]) # optional - sage.symbolic
401
+ sage: median([e, pi]) # needs sage.symbolic
402
402
1/2*pi + 1/2*e
403
403
sage: median(['sage', 'linux', 'python'])
404
404
'python'
405
- sage: median([]) # optional - sage.symbolic
405
+ sage: median([]) # needs sage.symbolic
406
406
NaN
407
407
sage: class MyClass:
408
408
....: def median(self):
@@ -459,7 +459,7 @@ def moving_average(v, n):
459
459
[5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2]
460
460
sage: moving_average([], 1)
461
461
[]
462
- sage: moving_average([pi, e, I, sqrt(2), 3/5], 2) # optional - sage.symbolic
462
+ sage: moving_average([pi, e, I, sqrt(2), 3/5], 2) # needs sage.symbolic
463
463
[1/2*pi + 1/2*e, 1/2*e + 1/2*I, 1/2*sqrt(2) + 1/2*I,
464
464
1/2*sqrt(2) + 3/10]
465
465
@@ -468,10 +468,10 @@ def moving_average(v, n):
468
468
different) meaning as defined above (the point is that the
469
469
:meth:`simple_moving_average` on time series returns `n` values::
470
470
471
- sage: a = stats.TimeSeries([1..10]) # optional - numpy
472
- sage: stats.moving_average(a, 3) # optional - numpy
471
+ sage: a = stats.TimeSeries([1..10]) # needs numpy
472
+ sage: stats.moving_average(a, 3) # needs numpy
473
473
[2.0000, 3.0000, 4.0000, 5.0000, 6.0000, 7.0000, 8.0000, 9.0000]
474
- sage: stats.moving_average(list(a), 3) # optional - numpy
474
+ sage: stats.moving_average(list(a), 3) # needs numpy
475
475
[2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
476
476
477
477
"""
0 commit comments