@@ -13,13 +13,13 @@ class LatticePolytope:
13
13
EXAMPLES::
14
14
15
15
sage: import sage. geometry. abc
16
- sage: P = LatticePolytope( [(1,2,3), (4,5,6) ]) # optional - sage. geometry. polyhedron
17
- sage: isinstance( P, sage. geometry. abc. LatticePolytope) # optional - sage. geometry. polyhedron
16
+ sage: P = LatticePolytope( [(1,2,3), (4,5,6) ]) # needs sage. geometry. polyhedron
17
+ sage: isinstance( P, sage. geometry. abc. LatticePolytope) # needs sage. geometry. polyhedron
18
18
True
19
19
20
20
By design, there is a unique direct subclass::
21
21
22
- sage: sage. geometry. abc. LatticePolytope. __subclasses__( ) # optional - sage. geometry. polyhedron
22
+ sage: sage. geometry. abc. LatticePolytope. __subclasses__( ) # needs sage. geometry. polyhedron
23
23
[<class 'sage.geometry.lattice_polytope.LatticePolytopeClass'> ]
24
24
25
25
sage: len( sage. geometry. abc. Polyhedron. __subclasses__( )) <= 1
@@ -39,13 +39,13 @@ class ConvexRationalPolyhedralCone:
39
39
EXAMPLES::
40
40
41
41
sage: import sage. geometry. abc
42
- sage: C = cones. nonnegative_orthant( 2) # optional - sage. geometry. polyhedron
43
- sage: isinstance( C, sage. geometry. abc. ConvexRationalPolyhedralCone) # optional - sage. geometry. polyhedron
42
+ sage: C = cones. nonnegative_orthant( 2) # needs sage. geometry. polyhedron
43
+ sage: isinstance( C, sage. geometry. abc. ConvexRationalPolyhedralCone) # needs sage. geometry. polyhedron
44
44
True
45
45
46
46
By design, there is a unique direct subclass::
47
47
48
- sage: sage. geometry. abc. ConvexRationalPolyhedralCone. __subclasses__( ) # optional - sage. geometry. polyhedron
48
+ sage: sage. geometry. abc. ConvexRationalPolyhedralCone. __subclasses__( ) # needs sage. geometry. polyhedron
49
49
[<class 'sage.geometry.cone.ConvexRationalPolyhedralCone'> ]
50
50
51
51
sage: len( sage. geometry. abc. Polyhedron. __subclasses__( )) <= 1
@@ -65,13 +65,13 @@ class Polyhedron:
65
65
EXAMPLES::
66
66
67
67
sage: import sage. geometry. abc
68
- sage: P = polytopes. cube( ) # optional - sage. geometry. polyhedron
69
- sage: isinstance( P, sage. geometry. abc. Polyhedron) # optional - sage. geometry. polyhedron
68
+ sage: P = polytopes. cube( ) # needs sage. geometry. polyhedron
69
+ sage: isinstance( P, sage. geometry. abc. Polyhedron) # needs sage. geometry. polyhedron
70
70
True
71
71
72
72
By design, there is a unique direct subclass::
73
73
74
- sage: sage. geometry. abc. Polyhedron. __subclasses__( ) # optional - sage. geometry. polyhedron
74
+ sage: sage. geometry. abc. Polyhedron. __subclasses__( ) # needs sage. geometry. polyhedron
75
75
[<class 'sage.geometry.polyhedron.base0.Polyhedron_base0'> ]
76
76
77
77
sage: len( sage. geometry. abc. Polyhedron. __subclasses__( )) <= 1
0 commit comments