@@ -1702,13 +1702,13 @@ cdef class MPolynomial(CommutativePolynomial):
1702
1702
an example of bad reduction at a prime ``p = 5``::
1703
1703
1704
1704
sage: R. <x,y,z> = PolynomialRing( QQ, 3)
1705
- sage: y. macaulay_resultant( [x^3 + 25*y^2*x, 5*z ]) # needs sage. modules
1705
+ sage: y. macaulay_resultant( [x^3 + 25*y^2*x, 5*z ]) # needs sage. libs . pari sage . modules
1706
1706
125
1707
1707
1708
1708
The input can given as an unpacked list of polynomials::
1709
1709
1710
1710
sage: R. <x,y,z> = PolynomialRing( QQ, 3)
1711
- sage: y. macaulay_resultant( x^ 3 + 25* y^ 2* x, 5* z) # needs sage. modules
1711
+ sage: y. macaulay_resultant( x^ 3 + 25* y^ 2* x, 5* z) # needs sage. libs . pari sage . modules
1712
1712
125
1713
1713
1714
1714
an example when the coefficients live in a finite field::
@@ -1723,7 +1723,7 @@ cdef class MPolynomial(CommutativePolynomial):
1723
1723
char polynomials of numerator/denominator) ::
1724
1724
1725
1725
sage: R. <x,y,z> = PolynomialRing( QQ, 3)
1726
- sage: y. macaulay_resultant( [x + z, z^2 ]) # needs sage. modules
1726
+ sage: y. macaulay_resultant( [x + z, z^2 ]) # needs sage. libs . pari sage . modules
1727
1727
-1
1728
1728
1729
1729
When there are only 2 polynomials, the Macaulay resultant degenerates to the traditional resultant::
@@ -2329,7 +2329,7 @@ cdef class MPolynomial(CommutativePolynomial):
2329
2329
sage: R. <x,h> = PolynomialRing( QQ)
2330
2330
sage: f = 19* x^ 8 - 262* x^ 7* h + 1507* x^ 6* h^ 2 - 4784* x^ 5* h^ 3 + 9202* x^ 4* h^ 4\
2331
2331
-10962* x^ 3* h^ 5 + 7844* x^ 2* h^ 6 - 3040* x* h^ 7 + 475* h^ 8
2332
- sage: f. reduced_form( prec=200, smallest_coeffs=False) # needs sage. modules
2332
+ sage: f. reduced_form( prec=200, smallest_coeffs=False) # needs sage. modules sage . rings . complex_interval_field
2333
2333
(
2334
2334
-x^ 8 - 2* x^ 7* h + 7* x^ 6* h^ 2 + 16* x^ 5* h^ 3 + 2* x^ 4* h^ 4 - 2* x^ 3* h^ 5 + 4* x^ 2* h^ 6 - 5* h^ 8,
2335
2335
<BLANKLINE>
@@ -2342,7 +2342,7 @@ cdef class MPolynomial(CommutativePolynomial):
2342
2342
sage: R. <x,y> = PolynomialRing( QQ)
2343
2343
sage: f = x^ 3 + 378666* x^ 2* y - 12444444* x* y^ 2 + 1234567890* y^ 3
2344
2344
sage: j = f * ( x-545* y) ^ 9
2345
- sage: j. reduced_form( prec=200, smallest_coeffs=False) # needs sage. modules
2345
+ sage: j. reduced_form( prec=200, smallest_coeffs=False) # needs sage. modules sage . rings . complex_interval_field
2346
2346
Traceback ( most recent call last) :
2347
2347
...
2348
2348
ValueError: cannot have a root with multiplicity >= 12/2
@@ -2351,7 +2351,7 @@ cdef class MPolynomial(CommutativePolynomial):
2351
2351
2352
2352
sage: R. <x,y> = PolynomialRing( QQ)
2353
2353
sage: F = x^ 6 + 3* x^ 5* y - 8* x^ 4* y^ 2 - 2* x^ 3* y^ 3 - 44* x^ 2* y^ 4 - 8* x* y^ 5
2354
- sage: F. reduced_form( smallest_coeffs=False, prec=400) # needs sage. modules
2354
+ sage: F. reduced_form( smallest_coeffs=False, prec=400) # needs sage. modules sage . rings . complex_interval_field
2355
2355
Traceback ( most recent call last) :
2356
2356
...
2357
2357
ArithmeticError: Newton's method converged to z not in the upper half plane
@@ -2360,7 +2360,7 @@ cdef class MPolynomial(CommutativePolynomial):
2360
2360
2361
2361
sage: R. <x,y> = PolynomialRing( QQ)
2362
2362
sage: F = 5* x^ 2* y - 5* x* y^ 2 - 30* y^ 3
2363
- sage: F. reduced_form( smallest_coeffs=False) # needs sage. modules
2363
+ sage: F. reduced_form( smallest_coeffs=False) # needs sage. modules sage . rings . complex_interval_field
2364
2364
(
2365
2365
[1 1 ]
2366
2366
5* x^ 2* y + 5* x* y^ 2 - 30* y^ 3, [0 1 ]
@@ -2371,12 +2371,12 @@ cdef class MPolynomial(CommutativePolynomial):
2371
2371
sage: R. <x,y> = PolynomialRing( QQ)
2372
2372
sage: F = ( -16* x^ 7 - 114* x^ 6* y - 345* x^ 5* y^ 2 - 599* x^ 4* y^ 3
2373
2373
.... : - 666* x^ 3* y^ 4 - 481* x^ 2* y^ 5 - 207* x* y^ 6 - 40* y^ 7)
2374
- sage: F. reduced_form( prec=50, smallest_coeffs=False) # needs sage. modules
2374
+ sage: F. reduced_form( prec=50, smallest_coeffs=False) # needs sage. modules sage . rings . complex_interval_field
2375
2375
Traceback ( most recent call last) :
2376
2376
...
2377
2377
ValueError: accuracy of Newton's root not within tolerance( 0. 000012... > 1e-06) ,
2378
2378
increase precision
2379
- sage: F. reduced_form( prec=100, smallest_coeffs=False) # needs sage. modules
2379
+ sage: F. reduced_form( prec=100, smallest_coeffs=False) # needs sage. modules sage . rings . complex_interval_field
2380
2380
(
2381
2381
[-1 -1 ]
2382
2382
-x^ 5* y^ 2 - 24* x^ 3* y^ 4 - 3* x^ 2* y^ 5 - 2* x* y^ 6 + 16* y^ 7, [ 1 0 ]
@@ -2386,14 +2386,14 @@ cdef class MPolynomial(CommutativePolynomial):
2386
2386
2387
2387
sage: R. <x,y> = PolynomialRing( QQ)
2388
2388
sage: F = - 8* x^ 4 - 3933* x^ 3* y - 725085* x^ 2* y^ 2 - 59411592* x* y^ 3 - 1825511633* y^ 4
2389
- sage: F. reduced_form( return_conjugation=False) # needs sage. modules
2389
+ sage: F. reduced_form( return_conjugation=False) # needs sage. modules sage . rings . complex_interval_field
2390
2390
x^ 4 + 9* x^ 3* y - 3* x* y^ 3 - 8* y^ 4
2391
2391
2392
2392
::
2393
2393
2394
2394
sage: R. <x,y> = QQ[]
2395
2395
sage: F = -2* x^ 3 + 2* x^ 2* y + 3* x* y^ 2 + 127* y^ 3
2396
- sage: F. reduced_form( ) # needs sage. modules
2396
+ sage: F. reduced_form( ) # needs sage. modules sage . rings . complex_interval_field
2397
2397
(
2398
2398
[1 4 ]
2399
2399
-2* x^ 3 - 22* x^ 2* y - 77* x* y^ 2 + 43* y^ 3, [0 1 ]
@@ -2403,7 +2403,7 @@ cdef class MPolynomial(CommutativePolynomial):
2403
2403
2404
2404
sage: R. <x,y> = QQ[]
2405
2405
sage: F = -2* x^ 3 + 2* x^ 2* y + 3* x* y^ 2 + 127* y^ 3
2406
- sage: F. reduced_form( norm_type='height') # needs sage. modules
2406
+ sage: F. reduced_form( norm_type='height') # needs sage. modules sage . rings . complex_interval_field
2407
2407
(
2408
2408
[5 4 ]
2409
2409
-58* x^ 3 - 47* x^ 2* y + 52* x* y^ 2 + 43* y^ 3, [1 1 ]
@@ -2413,7 +2413,7 @@ cdef class MPolynomial(CommutativePolynomial):
2413
2413
2414
2414
sage: R. <x,y,z> = PolynomialRing( QQ)
2415
2415
sage: F = x^ 4 + x^ 3* y* z + y^ 2* z
2416
- sage: F. reduced_form( ) # needs sage. modules
2416
+ sage: F. reduced_form( ) # needs sage. modules sage . rings . complex_interval_field
2417
2417
Traceback ( most recent call last) :
2418
2418
...
2419
2419
ValueError: ( =x^ 3* y* z + x^ 4 + y^ 2* z) must have two variables
@@ -2422,7 +2422,7 @@ cdef class MPolynomial(CommutativePolynomial):
2422
2422
2423
2423
sage: R. <x,y> = PolynomialRing( ZZ)
2424
2424
sage: F = - 8* x^ 6 - 3933* x^ 3* y - 725085* x^ 2* y^ 2 - 59411592* x* y^ 3 - 99* y^ 6
2425
- sage: F. reduced_form( return_conjugation=False) # needs sage. modules
2425
+ sage: F. reduced_form( return_conjugation=False) # needs sage. modules sage . rings . complex_interval_field
2426
2426
Traceback ( most recent call last) :
2427
2427
...
2428
2428
ValueError: ( =-8* x^ 6 - 99* y^ 6 - 3933* x^ 3* y - 725085* x^ 2* y^ 2 -
@@ -2433,7 +2433,7 @@ cdef class MPolynomial(CommutativePolynomial):
2433
2433
sage: R. <x,y> = PolynomialRing( RR)
2434
2434
sage: F = ( 217. 992172373276* x^ 3 + 96023. 1505442490* x^ 2* y
2435
2435
.... : + 1. 40987971253579e7* x* y^ 2 + 6. 90016027113216e8* y^ 3)
2436
- sage: F. reduced_form( smallest_coeffs=False) # tol 1e-8 # needs sage. modules
2436
+ sage: F. reduced_form( smallest_coeffs=False) # tol 1e-8 # needs sage. modules sage . rings . complex_interval_field
2437
2437
(
2438
2438
-39. 5673942565918* x^ 3 + 111. 874026298523* x^ 2* y
2439
2439
+ 231. 052762985229* x* y^ 2 - 138. 380829811096* y^ 3,
@@ -2449,7 +2449,7 @@ cdef class MPolynomial(CommutativePolynomial):
2449
2449
.... : + ( 84. 8317207268542 + 93. 8840848648033* CC. 0) * x^ 2* y
2450
2450
.... : + ( 3159. 07040755858 + 3475. 33037377779* CC. 0) * x* y^ 2
2451
2451
.... : + ( 39202. 5965389079 + 42882. 5139724962* CC. 0) * y^ 3)
2452
- sage: F. reduced_form( smallest_coeffs=False) # tol 1e-11 # needs sage. modules sage. rings. real_mpfr
2452
+ sage: F. reduced_form( smallest_coeffs=False) # tol 1e-11 # needs sage. modules sage. rings. complex_interval_field sage . rings . real_mpfr
2453
2453
(
2454
2454
( -0. 759099196558145 - 0. 845425869641446* I) * x^ 3
2455
2455
+ ( -0. 571709908900118 - 0. 0418133346027929* I) * x^ 2* y
0 commit comments