6161 (2, 3, 4)
6262 sage: list(t)
6363 [(1, 3, 4), (2, 3, 4)]
64- sage: t.plot(axes=False) # needs sage.plot
64+ sage: t.plot(axes=False) # needs sage.plot
6565 Graphics object consisting of 12 graphics primitives
6666
6767.. PLOT::
9191 sage: p = [[0,-1,-1], [0,0,1], [0,1,0], [1,-1,-1], [1,0,1], [1,1,0]]
9292 sage: points = PointConfiguration(p)
9393 sage: triang = points.triangulate()
94- sage: triang.plot(axes=False) # needs sage.plot
94+ sage: triang.plot(axes=False) # needs sage.plot
9595 Graphics3d Object
9696
9797.. PLOT::
116116 16
117117 sage: len(nonregular)
118118 2
119- sage: nonregular[0].plot(aspect_ratio=1, axes=False) # needs sage.plot
119+ sage: nonregular[0].plot(aspect_ratio=1, axes=False) # needs sage.plot
120120 Graphics object consisting of 25 graphics primitives
121121 sage: PointConfiguration.set_engine('internal') # to make doctests independent of TOPCOM
122122
@@ -1131,20 +1131,20 @@ def restricted_automorphism_group(self):
11311131
11321132 sage: pyramid = PointConfiguration([[1,0,0], [0,1,1], [0,1,-1],
11331133 ....: [0,-1,-1], [0,-1,1]])
1134- sage: G = pyramid.restricted_automorphism_group() # needs sage.graphs sage.groups
1135- sage: G == PermutationGroup([[(3,5)], [(2,3),(4,5)], [(2,4)]]) # needs sage.graphs sage.groups
1134+ sage: G = pyramid.restricted_automorphism_group() # needs sage.graphs sage.groups
1135+ sage: G == PermutationGroup([[(3,5)], [(2,3),(4,5)], [(2,4)]]) # needs sage.graphs sage.groups
11361136 True
1137- sage: DihedralGroup(4).is_isomorphic(G) # needs sage.graphs sage.groups
1137+ sage: DihedralGroup(4).is_isomorphic(G) # needs sage.graphs sage.groups
11381138 True
11391139
11401140 The square with an off-center point in the middle. Note that
11411141 the middle point breaks the restricted automorphism group
11421142 `D_4` of the convex hull::
11431143
11441144 sage: square = PointConfiguration([(3/4,3/4), (1,1), (1,-1), (-1,-1), (-1,1)])
1145- sage: square.restricted_automorphism_group() # needs sage.graphs sage.groups
1145+ sage: square.restricted_automorphism_group() # needs sage.graphs sage.groups
11461146 Permutation Group with generators [(3,5)]
1147- sage: DihedralGroup(1).is_isomorphic(_) # needs sage.graphs sage.groups
1147+ sage: DihedralGroup(1).is_isomorphic(_) # needs sage.graphs sage.groups
11481148 True
11491149 """
11501150 v_list = [ vector (p .projective ()) for p in self ]
@@ -1532,9 +1532,9 @@ def bistellar_flips(self):
15321532 sage: pc.bistellar_flips()
15331533 (((<0,1,3>, <0,2,3>), (<0,1,2>, <1,2,3>)),)
15341534 sage: Tpos, Tneg = pc.bistellar_flips()[0]
1535- sage: Tpos.plot(axes=False) # needs sage.plot
1535+ sage: Tpos.plot(axes=False) # needs sage.plot
15361536 Graphics object consisting of 11 graphics primitives
1537- sage: Tneg.plot(axes=False) # needs sage.plot
1537+ sage: Tneg.plot(axes=False) # needs sage.plot
15381538 Graphics object consisting of 11 graphics primitives
15391539
15401540 The 3d analog::
@@ -1549,7 +1549,7 @@ def bistellar_flips(self):
15491549 sage: pc.bistellar_flips()
15501550 (((<0,1,3>, <0,2,3>), (<0,1,2>, <1,2,3>)),)
15511551 sage: Tpos, Tneg = pc.bistellar_flips()[0]
1552- sage: Tpos.plot(axes=False) # needs sage.plot
1552+ sage: Tpos.plot(axes=False) # needs sage.plot
15531553 Graphics3d Object
15541554 """
15551555 flips = []
@@ -2080,7 +2080,7 @@ def Gale_transform(self, points=None, homogenize=True):
20802080 [ 1 1 1 0 -3]
20812081 [ 0 2 2 -1 -3]
20822082
2083- It might not affect the dimension of the result::
2083+ It might not affect the dimension of the result::
20842084
20852085 sage: PC = PointConfiguration([[4,0,0],[0,4,0],[0,0,4],[2,1,1],[1,2,1],[1,1,2]])
20862086 sage: GT = PC.Gale_transform(homogenize=False);GT
@@ -2136,9 +2136,9 @@ def deformation_cone(self, collection):
21362136 - ``collection`` -- a collection of subconfigurations of ``self``.
21372137 Subconfigurations are given as indices
21382138
2139- OUTPUT: a polyhedron. It contains the liftings of the point configuration
2140- making the collection a regular (or coherent, or projective)
2141- subdivision.
2139+ OUTPUT: a polyhedron. It contains the liftings of the point configuration
2140+ making the collection a regular (or coherent, or projective, or
2141+ polytopal) subdivision.
21422142
21432143 EXAMPLES::
21442144
@@ -2170,58 +2170,56 @@ def deformation_cone(self, collection):
21702170 Let's verify the mother of all examples explained in Section 7.1.1 of
21712171 [DLRS2010]_::
21722172
2173+ sage: def mother(epsilon=0):
2174+ ....: return PointConfiguration([(4-epsilon,epsilon,0),(0,4-epsilon,epsilon),(epsilon,0,4-epsilon),(2,1,1),(1,2,1),(1,1,2)])
2175+
21732176 sage: epsilon = 0
2174- sage: mother = PointConfiguration([(4-epsilon,epsilon,0),(0,4-epsilon,epsilon),(epsilon,0,4-epsilon),(2,1,1),(1,2,1),(1,1,2)] )
2177+ sage: m = mother(0 )
21752178 sage: mother.points()
21762179 (P(4, 0, 0), P(0, 4, 0), P(0, 0, 4), P(2, 1, 1), P(1, 2, 1), P(1, 1, 2))
21772180 sage: S1 = [(0,1,4),(0,3,4),(1,2,5),(1,4,5),(0,2,3),(2,3,5)]
21782181 sage: S2 = [(0,1,3),(1,3,4),(1,2,4),(2,4,5),(0,2,5),(0,3,5)]
21792182
21802183 Both subdivisions `S1` and `S2` are not regular::
21812184
2182- sage: mother_dc1 = mother .deformation_cone(S1)
2185+ sage: mother_dc1 = m .deformation_cone(S1)
21832186 sage: mother_dc1
21842187 A 4-dimensional polyhedron in QQ^6 defined as the convex hull of 1 vertex, 1 ray, 3 lines
2185- sage: mother_dc2 = mother .deformation_cone(S2)
2188+ sage: mother_dc2 = m .deformation_cone(S2)
21862189 sage: mother_dc2
21872190 A 4-dimensional polyhedron in QQ^6 defined as the convex hull of 1 vertex, 1 ray, 3 lines
21882191
21892192 Notice that they have a ray which provides a degenerate lifting which
21902193 only provides a coarsening of the subdivision from the lower hull (it
21912194 has 5 facets, and should have 8)::
21922195
2193- sage: result = Polyhedron([vector(list(mother .points()[_])+[mother_dc1.rays()[0][_]]) for _ in range(len(mother .points()))])
2196+ sage: result = Polyhedron([vector(list(m .points()[_])+[mother_dc1.rays()[0][_]]) for _ in range(len(m .points()))])
21942197 sage: result.f_vector()
21952198 (1, 6, 9, 5, 1)
21962199
21972200 But if we use epsilon to perturb the configuration, suddenly
21982201 `S1` becomes regular::
21992202
22002203 sage: epsilon = 1/2
2201- sage: mother = PointConfiguration([(4-epsilon,epsilon,0),
2202- (0,4-epsilon,epsilon),
2203- (epsilon,0,4-epsilon),
2204- (2,1,1),
2205- (1,2,1),
2206- (1,1,2)])
2207- sage: mother.points()
2204+ sage: mp = mother(epsilon)
2205+ sage: mp.points()
22082206 (P(7/2, 1/2, 0),
22092207 P(0, 7/2, 1/2),
22102208 P(1/2, 0, 7/2),
22112209 P(2, 1, 1),
22122210 P(1, 2, 1),
22132211 P(1, 1, 2))
2214- sage: mother_dc1 = mother .deformation_cone(S1);mother_dc1
2212+ sage: mother_dc1 = mp .deformation_cone(S1);mother_dc1
22152213 A 6-dimensional polyhedron in QQ^6 defined as the convex hull of 1 vertex, 3 rays, 3 lines
2216- sage: mother_dc2 = mother .deformation_cone(S2);mother_dc2
2214+ sage: mother_dc2 = mp .deformation_cone(S2);mother_dc2
22172215 A 3-dimensional polyhedron in QQ^6 defined as the convex hull of 1 vertex and 3 lines
22182216
2219- .. SEEALSO::
2220-
2217+ .. SEEALSO::
2218+
22212219 :meth:`~sage.schemes.toric.variety.Kaehler_cone`
2222-
2220+
22232221 REFERENCES:
2224-
2222+
22252223 For more information, see Section 5.4 of [DLRS2010]_ and Section
22262224 2.2 of [ACEP2020].
22272225 """
0 commit comments