@@ -454,16 +454,49 @@ class CenterUEA(CombinatorialFreeModule):
454
454
sage: all(v * g == g * v for g in U.algebra_generators() for v in elts) # long time
455
455
True
456
456
457
+ The Heisenberg Lie algebra `H_4` over a finite field; note the basis
458
+ elements `b^p \in Z(U(H_4))` for the basis elements `b \in H_4`::
459
+
457
460
sage: g = lie_algebras.Heisenberg(GF(3), 4)
458
461
sage: U = g.pbw_basis()
459
462
sage: Z = U.center()
460
463
sage: B = Z.basis()
461
464
sage: it = iter(B)
462
465
sage: center_elts = [next(it) for _ in range(12)]; center_elts
463
466
[1, Z[0], Z[0]^2, Z[0]^3, Z[1], Z[2], Z[3], Z[4], Z[5], Z[6], Z[7], Z[8]]
464
- sage: elts = [U(v) for v in center_elts]; set(elts)
465
- {1, PBW['p1']^3, PBW['p2']^3, PBW['p3']^3, PBW['p4']^3, PBW['q1']^3,
466
- PBW['q2']^3, PBW['q3']^3, PBW['q4']^3, PBW['z'], PBW['z']^2, PBW['z']^3}
467
+ sage: elts = [U(v) for v in center_elts]; elts
468
+ [1, PBW['z'], PBW['z']^2, PBW['z']^3, PBW['p1']^3, PBW['p2']^3, PBW['p3']^3,
469
+ PBW['p4']^3, PBW['q1']^3, PBW['q2']^3, PBW['q3']^3, PBW['q4']^3]
470
+ sage: all(v * g == g * v for g in U.algebra_generators() for v in elts)
471
+ True
472
+
473
+ An example with a free 4-step nilpotent Lie algebras on 2 generators::
474
+
475
+ sage: L = LieAlgebra(QQ, 2, step=4); L
476
+ Free Nilpotent Lie algebra on 8 generators
477
+ (X_1, X_2, X_12, X_112, X_122, X_1112, X_1122, X_1222) over Rational Field
478
+ sage: U = L.pbw_basis()
479
+ sage: Z = U.center()
480
+ sage: it = iter(Z.basis())
481
+ sage: center_elts = [next(it) for _ in range(10)]; center_elts
482
+ [1, Z[0], Z[1], Z[2], Z[0]^2, Z[0]*Z[1], Z[0]*Z[2], Z[1]^2, Z[1]*Z[2], Z[2]^2]
483
+ sage: elts = [U(v) for v in center_elts]; elts
484
+ [1, PBW[(1, 1, 1, 2)], PBW[(1, 1, 2, 2)], PBW[(1, 2, 2, 2)], PBW[(1, 1, 1, 2)]^2,
485
+ PBW[(1, 1, 1, 2)]*PBW[(1, 1, 2, 2)], PBW[(1, 1, 1, 2)]*PBW[(1, 2, 2, 2)],
486
+ PBW[(1, 1, 2, 2)]^2, PBW[(1, 1, 2, 2)]*PBW[(1, 2, 2, 2)], PBW[(1, 2, 2, 2)]^2]
487
+ sage: all(v * g == g * v for g in U.algebra_generators() for v in elts)
488
+ True
489
+
490
+ Using the Engel Lie algebra::
491
+
492
+ sage: L.<X,Y,Z> = LieAlgebra(QQ, {('X','Y'): {'Z': 1}}, nilpotent=True)
493
+ sage: U = L.pbw_basis()
494
+ sage: Z = U.center()
495
+ sage: it = iter(Z.basis())
496
+ sage: center_elts = [next(it) for _ in range(6)]; center_elts
497
+ [1, Z[0], Z[0]^2, Z[0]^3, Z[0]^4, Z[0]^5]
498
+ sage: elts = [U(v) for v in center_elts]; elts
499
+ [1, PBW['Z'], PBW['Z']^2, PBW['Z']^3, PBW['Z']^4, PBW['Z']^5]
467
500
sage: all(v * g == g * v for g in U.algebra_generators() for v in elts)
468
501
True
469
502
"""
0 commit comments