Skip to content

Commit 3df8c81

Browse files
author
Matthias Koeppe
committed
sage.tests: Update # needs
1 parent 2a84d76 commit 3df8c81

File tree

1 file changed

+14
-11
lines changed

1 file changed

+14
-11
lines changed

src/sage/tests/parigp.py

Lines changed: 14 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -40,32 +40,35 @@
4040
4141
Check that the optional PARI databases work::
4242
43-
sage: gp.ellinit('"299998a1"') # optional -- pari_elldata
43+
sage: # optional - pari_elldata
44+
sage: gp.ellinit('"299998a1"')
4445
[1, 0, 1, 110, -3660, ...]
45-
sage: E = EllipticCurve("1728ba1")
46-
sage: gp(E).ellidentify() # optional -- pari_elldata
46+
sage: E = EllipticCurve("1728ba1") # needs sage.schemes
47+
sage: gp(E).ellidentify() # needs sage.schemes
4748
[["1728ba1", [0, 0, 0, -6, 6], [[1, 1]]], [1, 0, 0, 0]]
4849
49-
sage: pari("ellmodulareqn(211)") # optional -- pari_seadata
50-
[x^212 + (-y^7 + 5207*y^6 - 10241606*y^5 + 9430560101*y^4 - 4074860204015*y^3 + 718868274900397*y^2 - 34897101275826114*y + 104096378056356968)*x^211...
50+
sage: pari("ellmodulareqn(211)") # optional - pari_seadata
51+
[x^212 + (-y^7 + 5207*y^6 - 10241606*y^5 + 9430560101*y^4 - 4074860204015*y^3
52+
+ 718868274900397*y^2 - 34897101275826114*y + 104096378056356968)*x^211...
5153
5254
The following requires the modular polynomials up to degree 223, while
5355
only those up to degree 199 come standard in Sage::
5456
5557
sage: p = next_prime(2^328)
56-
sage: E = EllipticCurve(GF(p), [6,1])
57-
sage: E.cardinality() # long time (108s on sage.math, 2013), optional -- pari_seadata
58+
sage: E = EllipticCurve(GF(p), [6,1]) # needs sage.schemes
59+
sage: E.cardinality() # long time (108s on sage.math, 2013), optional - pari_seadata, needs sage.schemes
5860
546812681195752981093125556779405341338292357723293496548601032930284335897180749997402596957976244
5961
6062
Create a number field with Galois group `A4`. Group `A4` corresponds to
6163
transitive group `(12,3)` in GAP::
6264
65+
sage: # optional - pari_galpol
6366
sage: R.<x> = PolynomialRing(ZZ)
64-
sage: pol = pari("galoisgetpol(12,3)[1]") # optional -- pari_galpol
65-
sage: K.<a> = NumberField(R(pol)) # optional -- pari_galpol
66-
sage: factor(K.discriminant()) # optional -- pari_galpol
67+
sage: pol = pari("galoisgetpol(12,3)[1]")
68+
sage: K.<a> = NumberField(R(pol))
69+
sage: factor(K.discriminant())
6770
163^8
68-
sage: [F.degree() for F,a,b in K.subfields()] # optional -- pari_galpol
71+
sage: [F.degree() for F,a,b in K.subfields()]
6972
[1, 3, 4, 4, 4, 4, 6, 6, 6, 12]
7073
sage: sorted([12/H.cardinality() for H in AlternatingGroup(4).subgroups()])
7174
[1, 3, 4, 4, 4, 4, 6, 6, 6, 12]

0 commit comments

Comments
 (0)