|
40 | 40 |
|
41 | 41 | Check that the optional PARI databases work::
|
42 | 42 |
|
43 |
| - sage: gp.ellinit('"299998a1"') # optional -- pari_elldata |
| 43 | + sage: # optional - pari_elldata |
| 44 | + sage: gp.ellinit('"299998a1"') |
44 | 45 | [1, 0, 1, 110, -3660, ...]
|
45 |
| - sage: E = EllipticCurve("1728ba1") |
46 |
| - sage: gp(E).ellidentify() # optional -- pari_elldata |
| 46 | + sage: E = EllipticCurve("1728ba1") # needs sage.schemes |
| 47 | + sage: gp(E).ellidentify() # needs sage.schemes |
47 | 48 | [["1728ba1", [0, 0, 0, -6, 6], [[1, 1]]], [1, 0, 0, 0]]
|
48 | 49 |
|
49 |
| - sage: pari("ellmodulareqn(211)") # optional -- pari_seadata |
50 |
| - [x^212 + (-y^7 + 5207*y^6 - 10241606*y^5 + 9430560101*y^4 - 4074860204015*y^3 + 718868274900397*y^2 - 34897101275826114*y + 104096378056356968)*x^211... |
| 50 | + sage: pari("ellmodulareqn(211)") # optional - pari_seadata |
| 51 | + [x^212 + (-y^7 + 5207*y^6 - 10241606*y^5 + 9430560101*y^4 - 4074860204015*y^3 |
| 52 | + + 718868274900397*y^2 - 34897101275826114*y + 104096378056356968)*x^211... |
51 | 53 |
|
52 | 54 | The following requires the modular polynomials up to degree 223, while
|
53 | 55 | only those up to degree 199 come standard in Sage::
|
54 | 56 |
|
55 | 57 | sage: p = next_prime(2^328)
|
56 |
| - sage: E = EllipticCurve(GF(p), [6,1]) |
57 |
| - sage: E.cardinality() # long time (108s on sage.math, 2013), optional -- pari_seadata |
| 58 | + sage: E = EllipticCurve(GF(p), [6,1]) # needs sage.schemes |
| 59 | + sage: E.cardinality() # long time (108s on sage.math, 2013), optional - pari_seadata, needs sage.schemes |
58 | 60 | 546812681195752981093125556779405341338292357723293496548601032930284335897180749997402596957976244
|
59 | 61 |
|
60 | 62 | Create a number field with Galois group `A4`. Group `A4` corresponds to
|
61 | 63 | transitive group `(12,3)` in GAP::
|
62 | 64 |
|
| 65 | + sage: # optional - pari_galpol |
63 | 66 | sage: R.<x> = PolynomialRing(ZZ)
|
64 |
| - sage: pol = pari("galoisgetpol(12,3)[1]") # optional -- pari_galpol |
65 |
| - sage: K.<a> = NumberField(R(pol)) # optional -- pari_galpol |
66 |
| - sage: factor(K.discriminant()) # optional -- pari_galpol |
| 67 | + sage: pol = pari("galoisgetpol(12,3)[1]") |
| 68 | + sage: K.<a> = NumberField(R(pol)) |
| 69 | + sage: factor(K.discriminant()) |
67 | 70 | 163^8
|
68 |
| - sage: [F.degree() for F,a,b in K.subfields()] # optional -- pari_galpol |
| 71 | + sage: [F.degree() for F,a,b in K.subfields()] |
69 | 72 | [1, 3, 4, 4, 4, 4, 6, 6, 6, 12]
|
70 | 73 | sage: sorted([12/H.cardinality() for H in AlternatingGroup(4).subgroups()])
|
71 | 74 | [1, 3, 4, 4, 4, 4, 6, 6, 6, 12]
|
|
0 commit comments