You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Conversion from Laurent series to rational function field gives an approximation::
668
+
669
+
sage: F.<x> = Frac(QQ['x'])
670
+
sage: R.<x> = QQ[[]]
671
+
sage: f = Frac(R)(1/(x+1))
672
+
sage: f.parent()
673
+
Laurent Series Ring in x over Rational Field
674
+
sage: F(f)
675
+
Traceback (most recent call last):
676
+
...
677
+
TypeError: cannot convert 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 - x^13 + x^14 - x^15 + x^16 - x^17 + x^18 - x^19 + O(x^20)/1 to an element of Fraction Field of Univariate Polynomial Ring in x over Rational Field
TypeError: cannot convert 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 - x^13 + x^14 - x^15 + x^16 - x^17 + x^18 - x^19/1 to an element of Fraction Field of Univariate Polynomial Ring in x over Rational Field
686
+
sage: f = 1/(x*(x+1))
687
+
sage: f.parent()
688
+
Laurent Series Ring in x over Rational Field
689
+
sage: F(f)
690
+
Traceback (most recent call last):
691
+
...
692
+
TypeError: cannot convert x^-1 - 1 + x - x^2 + x^3 - x^4 + x^5 - x^6 + x^7 - x^8 + x^9 - x^10 + x^11 - x^12 + x^13 - x^14 + x^15 - x^16 + x^17 - x^18 + O(x^19)/1 to an element of Fraction Field of Univariate Polynomial Ring in x over Rational Field
TypeError: cannot convert 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 - x^13 + x^14 - x^15 + x^16 - x^17 + x^18 - x^19 + O(x^20)/1 to an element of Fraction Field of Univariate Polynomial Ring in x over Rational Field
706
+
sage: f = 1/(x*(x+1))
707
+
sage: K(f)
708
+
Traceback (most recent call last):
709
+
...
710
+
TypeError: cannot convert x^-1 - 1 + x - x^2 + x^3 - x^4 + x^5 - x^6 + x^7 - x^8 + x^9 - x^10 + x^11 - x^12 + x^13 - x^14 + x^15 - x^16 + x^17 - x^18 + O(x^19)/1 to an element of Fraction Field of Univariate Polynomial Ring in x over Rational Field
0 commit comments