@@ -171,10 +171,7 @@ def _isogeny_determine_algorithm(E, kernel):
171
171
172
172
raise ValueError ("invalid parameters to EllipticCurveIsogeny constructor" )
173
173
174
- from sage .misc .superseded import deprecated_function_alias
175
- isogeny_determine_algorithm = deprecated_function_alias (33619 , _isogeny_determine_algorithm )
176
-
177
- def isogeny_codomain_from_kernel (E , kernel , degree = None ):
174
+ def isogeny_codomain_from_kernel (E , kernel ):
178
175
r"""
179
176
Compute the isogeny codomain given a kernel.
180
177
@@ -214,23 +211,7 @@ def isogeny_codomain_from_kernel(E, kernel, degree=None):
214
211
sage: isogeny_codomain_from_kernel(E, kernel_list) # optional - sage.rings.finite_rings
215
212
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 3*x + 15
216
213
over Finite Field of size 19
217
-
218
- TESTS:
219
-
220
- Test deprecation warning for obsolete argument::
221
-
222
- sage: isogeny_codomain_from_kernel(E, kernel_list, degree=4) # optional - sage.rings.finite_rings
223
- doctest:warning
224
- ...
225
- DeprecationWarning: The "degree" argument to isogeny_codomain_from_kernel() does nothing and will be removed.
226
- ...
227
- Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 3*x + 15
228
- over Finite Field of size 19
229
214
"""
230
- if degree is not None :
231
- from sage .misc .superseded import deprecation
232
- deprecation (33619 , 'The "degree" argument to isogeny_codomain_from_kernel() does nothing and will be removed.' )
233
-
234
215
algorithm = _isogeny_determine_algorithm (E , kernel )
235
216
236
217
if algorithm == 'velu' :
@@ -3435,46 +3416,6 @@ def compute_isogeny_stark(E1, E2, ell):
3435
3416
from sage .misc .superseded import deprecated_function_alias
3436
3417
compute_isogeny_starks = deprecated_function_alias (34871 , compute_isogeny_stark )
3437
3418
3438
- def split_kernel_polynomial (poly ):
3439
- r"""
3440
- Obsolete internal helper function formerly used by
3441
- :func:`compute_isogeny_kernel_polynomial`.
3442
-
3443
- Use
3444
- :meth:`~sage.rings.polynomial.polynomial_element.Polynomial.radical`
3445
- instead.
3446
-
3447
- INPUT:
3448
-
3449
- - ``poly`` -- a nonzero univariate polynomial
3450
-
3451
- OUTPUT:
3452
-
3453
- The maximum separable divisor of ``poly``. If the input is a full
3454
- kernel polynomial where the roots which are `x`-coordinates of
3455
- points of order greater than 2 have multiplicity 1, the output
3456
- will be a polynomial with the same roots, all of multiplicity 1.
3457
-
3458
- EXAMPLES:
3459
-
3460
- Check that this behaves identically to ``.radical()``::
3461
-
3462
- sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import split_kernel_polynomial
3463
- sage: q = next_prime(randrange(3,10^3)) # optional - sage.rings.finite_rings
3464
- sage: e = randrange(1,5) # optional - sage.rings.finite_rings
3465
- sage: R = GF(q^e,'a')['x'] # optional - sage.rings.finite_rings
3466
- sage: f = R.random_element(randrange(10,100)).monic() # optional - sage.rings.finite_rings
3467
- sage: split_kernel_polynomial(f) == f.radical() # optional - sage.rings.finite_rings
3468
- doctest:warning ...
3469
- DeprecationWarning: ...
3470
- True
3471
- """
3472
- from sage .misc .superseded import deprecation
3473
- deprecation (33619 , 'The split_kernel_polynomial() function is obsolete. '
3474
- 'Use .radical() instead.' )
3475
- from sage .misc .misc_c import prod
3476
- return prod ([p for p ,e in poly .squarefree_decomposition ()])
3477
-
3478
3419
def compute_isogeny_kernel_polynomial (E1 , E2 , ell , algorithm = "stark" ):
3479
3420
r"""
3480
3421
Return the kernel polynomial of an isogeny of degree ``ell``
0 commit comments