Skip to content

Commit 417568b

Browse files
author
Matthias Koeppe
committed
src/sage/rings/number_field/number_field.py: Doctest cosmetics
1 parent 130ae86 commit 417568b

File tree

1 file changed

+20
-20
lines changed

1 file changed

+20
-20
lines changed

src/sage/rings/number_field/number_field.py

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -1554,7 +1554,7 @@ def _magma_polynomial_(self, magma):
15541554
sage: K.<a> = NumberField(x^3 + 2)
15551555
sage: K._magma_polynomial_(magma)
15561556
x^3 + 2
1557-
sage: magma2=Magma()
1557+
sage: magma2 = Magma()
15581558
sage: K._magma_polynomial_(magma2)
15591559
x^3 + 2
15601560
sage: K._magma_polynomial_(magma) is K._magma_polynomial_(magma)
@@ -1696,7 +1696,7 @@ def _element_constructor_(self, x, check=True):
16961696
16971697
sage: x = polygen(ZZ, 'x')
16981698
sage: K.<a> = NumberField(x^3 + 17)
1699-
sage: K(a) is a # indirect doctest
1699+
sage: K(a) is a # indirect doctest
17001700
True
17011701
sage: K('a^2 + 2/3*a + 5')
17021702
a^2 + 2/3*a + 5
@@ -1887,9 +1887,9 @@ def _convert_non_number_field_element(self, x):
18871887
will convert to the number field, e.g., this one in
18881888
characteristic 7::
18891889
1890-
sage: f = GF(7)['y']([1,2,3]); f # needs sage.rings.finite_rings
1890+
sage: f = GF(7)['y']([1,2,3]); f
18911891
3*y^2 + 2*y + 1
1892-
sage: K._convert_non_number_field_element(f) # needs sage.rings.finite_rings
1892+
sage: K._convert_non_number_field_element(f)
18931893
3*a^2 + 2*a + 1
18941894
18951895
But not this one over a field of order 27::
@@ -2046,7 +2046,7 @@ def _Hom_(self, codomain, category=None):
20462046
sage: x = polygen(ZZ, 'x')
20472047
sage: K.<i> = NumberField(x^2 + 1); K
20482048
Number Field in i with defining polynomial x^2 + 1
2049-
sage: K.Hom(K) # indirect doctest
2049+
sage: K.Hom(K) # indirect doctest
20502050
Automorphism group of Number Field in i with defining polynomial x^2 + 1
20512051
sage: Hom(K, QuadraticField(-1, 'b'))
20522052
Set of field embeddings
@@ -3848,7 +3848,7 @@ def primes_above(self, x, degree=None):
38483848
::
38493849
38503850
sage: P2s = F.primes_above(2)
3851-
sage: P2s # random
3851+
sage: P2s # random
38523852
[Fractional ideal (-t)]
38533853
sage: all(2 in P2 for P2 in P2s)
38543854
True
@@ -8458,7 +8458,7 @@ def _coerce_map_from_(self, R):
84588458
84598459
sage: x = polygen(QQ, 'x')
84608460
sage: S.<y> = NumberField(x^3 + x + 1)
8461-
sage: S.coerce(int(4)) # indirect doctest
8461+
sage: S.coerce(int(4)) # indirect doctest
84628462
4
84638463
sage: S.coerce(-Integer(2))
84648464
-2
@@ -8919,21 +8919,21 @@ def _subfields_helper(self, degree=0, name=None, both_maps=True, optimize=False)
89198919
sage: K, CDF(a)
89208920
(Number Field in a with defining polynomial x^4 - 23 with a = 2.189938703094843?,
89218921
2.1899387030948425)
8922-
sage: Ss = K.subfields(); len(Ss) # indirect doctest
8922+
sage: Ss = K.subfields(); len(Ss) # indirect doctest
89238923
3
89248924
sage: diffs = [ S.coerce_embedding()(S.gen()) - CDF(S_into_K(S.gen())) for S, S_into_K, _ in Ss ]
89258925
sage: all(abs(diff) < 1e-5 for diff in diffs)
89268926
True
89278927
8928-
sage: L1, _, _ = K.subfields(2)[0]; L1, CDF(L1.gen()) # indirect doctest
8928+
sage: L1, _, _ = K.subfields(2)[0]; L1, CDF(L1.gen()) # indirect doctest
89298929
(Number Field in a0 with defining polynomial x^2 - 23 with a0 = -4.795831523312720?,
89308930
-4.795831523312719)
89318931
89328932
If we take a different embedding of the large field, we get a
89338933
different embedding of the degree 2 subfield::
89348934
89358935
sage: K.<a> = NumberField(x^4 - 23, embedding=-50)
8936-
sage: L2, _, _ = K.subfields(2)[0]; L2, CDF(L2.gen()) # indirect doctest
8936+
sage: L2, _, _ = K.subfields(2)[0]; L2, CDF(L2.gen()) # indirect doctest
89378937
(Number Field in a0 with defining polynomial x^2 - 23 with a0 = -4.795831523312720?,
89388938
-4.795831523312719)
89398939
@@ -11123,7 +11123,7 @@ def _latex_(self):
1112311123
sage: Z = CyclotomicField(4)
1112411124
sage: Z.gen()
1112511125
zeta4
11126-
sage: latex(Z) # indirect doctest
11126+
sage: latex(Z) # indirect doctest
1112711127
\Bold{Q}(\zeta_{4})
1112811128
1112911129
Latex printing respects the generator name::
@@ -11171,7 +11171,7 @@ def _coerce_map_from_(self, K):
1117111171
1117211172
sage: K.<a> = CyclotomicField(12)
1117311173
sage: L.<b> = CyclotomicField(132)
11174-
sage: L.coerce_map_from(K) # indirect doctest
11174+
sage: L.coerce_map_from(K) # indirect doctest
1117511175
Generic morphism:
1117611176
From: Cyclotomic Field of order 12 and degree 4
1117711177
To: Cyclotomic Field of order 132 and degree 40
@@ -11401,7 +11401,7 @@ def _element_constructor_(self, x, check=True):
1140111401
sage: a = k42.gen(0)
1140211402
sage: b = a^7; b
1140311403
zeta42^7
11404-
sage: k6(b) # indirect doctest
11404+
sage: k6(b) # indirect doctest
1140511405
zeta6
1140611406
sage: b^2
1140711407
zeta42^7 - 1
@@ -11519,7 +11519,7 @@ def _coerce_from_gap(self, x):
1151911519
-3*E(5)-2*E(5)^2-3*E(5)^3-3*E(5)^4
1152011520
sage: z^7 + 3 # needs sage.libs.gap
1152111521
z^2 + 3
11522-
sage: k5(w) # indirect doctest # needs sage.libs.gap
11522+
sage: k5(w) # indirect doctest # needs sage.libs.gap
1152311523
z^2 + 3
1152411524
1152511525
It may be that GAP uses a name for the generator of the cyclotomic field.
@@ -11576,7 +11576,7 @@ def _Hom_(self, codomain, cat=None):
1157611576
sage: x = polygen(ZZ, 'x')
1157711577
sage: K.<a> = NumberField(x^2 + 3); K
1157811578
Number Field in a with defining polynomial x^2 + 3
11579-
sage: CyclotomicField(3).Hom(K) # indirect doctest
11579+
sage: CyclotomicField(3).Hom(K) # indirect doctest
1158011580
Set of field embeddings
1158111581
from Cyclotomic Field of order 3 and degree 2
1158211582
to Number Field in a with defining polynomial x^2 + 3
@@ -12187,7 +12187,7 @@ def _coerce_map_from_(self, K):
1218712187
EXAMPLES::
1218812188
1218912189
sage: K.<a> = QuadraticField(-3)
12190-
sage: f = K.coerce_map_from(QQ); f # indirect doctest
12190+
sage: f = K.coerce_map_from(QQ); f # indirect doctest
1219112191
Natural morphism:
1219212192
From: Rational Field
1219312193
To: Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I
@@ -12196,7 +12196,7 @@ def _coerce_map_from_(self, K):
1219612196
sage: parent(f(3/5)) is K
1219712197
True
1219812198
12199-
sage: g = K.coerce_map_from(ZZ); g # indirect doctest
12199+
sage: g = K.coerce_map_from(ZZ); g # indirect doctest
1220012200
Natural morphism:
1220112201
From: Integer Ring
1220212202
To: Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I
@@ -12220,11 +12220,11 @@ def _latex_(self):
1222012220
EXAMPLES::
1222112221
1222212222
sage: Z = QuadraticField(7)
12223-
sage: latex(Z) # indirect doctest
12223+
sage: latex(Z) # indirect doctest
1222412224
\Bold{Q}(\sqrt{7})
1222512225
1222612226
sage: Z = QuadraticField(7, latex_name='x')
12227-
sage: latex(Z) # indirect doctest
12227+
sage: latex(Z) # indirect doctest
1222812228
\Bold{Q}[x]/(x^{2} - 7)
1222912229
"""
1223012230
v = self.latex_variable_names()[0]
@@ -12243,7 +12243,7 @@ def _polymake_init_(self):
1224312243
EXAMPLES::
1224412244
1224512245
sage: Z = QuadraticField(7)
12246-
sage: polymake(Z) # optional - jupymake # indirect doctest
12246+
sage: polymake(Z) # optional - jupymake # indirect doctest
1224712247
QuadraticExtension
1224812248
1224912249
"""

0 commit comments

Comments
 (0)