@@ -1554,7 +1554,7 @@ def _magma_polynomial_(self, magma):
1554
1554
sage: K.<a> = NumberField(x^3 + 2)
1555
1555
sage: K._magma_polynomial_(magma)
1556
1556
x^3 + 2
1557
- sage: magma2= Magma()
1557
+ sage: magma2 = Magma()
1558
1558
sage: K._magma_polynomial_(magma2)
1559
1559
x^3 + 2
1560
1560
sage: K._magma_polynomial_(magma) is K._magma_polynomial_(magma)
@@ -1696,7 +1696,7 @@ def _element_constructor_(self, x, check=True):
1696
1696
1697
1697
sage: x = polygen(ZZ, 'x')
1698
1698
sage: K.<a> = NumberField(x^3 + 17)
1699
- sage: K(a) is a # indirect doctest
1699
+ sage: K(a) is a # indirect doctest
1700
1700
True
1701
1701
sage: K('a^2 + 2/3*a + 5')
1702
1702
a^2 + 2/3*a + 5
@@ -1887,9 +1887,9 @@ def _convert_non_number_field_element(self, x):
1887
1887
will convert to the number field, e.g., this one in
1888
1888
characteristic 7::
1889
1889
1890
- sage: f = GF(7)['y']([1,2,3]); f # needs sage.rings.finite_rings
1890
+ sage: f = GF(7)['y']([1,2,3]); f
1891
1891
3*y^2 + 2*y + 1
1892
- sage: K._convert_non_number_field_element(f) # needs sage.rings.finite_rings
1892
+ sage: K._convert_non_number_field_element(f)
1893
1893
3*a^2 + 2*a + 1
1894
1894
1895
1895
But not this one over a field of order 27::
@@ -2046,7 +2046,7 @@ def _Hom_(self, codomain, category=None):
2046
2046
sage: x = polygen(ZZ, 'x')
2047
2047
sage: K.<i> = NumberField(x^2 + 1); K
2048
2048
Number Field in i with defining polynomial x^2 + 1
2049
- sage: K.Hom(K) # indirect doctest
2049
+ sage: K.Hom(K) # indirect doctest
2050
2050
Automorphism group of Number Field in i with defining polynomial x^2 + 1
2051
2051
sage: Hom(K, QuadraticField(-1, 'b'))
2052
2052
Set of field embeddings
@@ -3848,7 +3848,7 @@ def primes_above(self, x, degree=None):
3848
3848
::
3849
3849
3850
3850
sage: P2s = F.primes_above(2)
3851
- sage: P2s # random
3851
+ sage: P2s # random
3852
3852
[Fractional ideal (-t)]
3853
3853
sage: all(2 in P2 for P2 in P2s)
3854
3854
True
@@ -8458,7 +8458,7 @@ def _coerce_map_from_(self, R):
8458
8458
8459
8459
sage: x = polygen(QQ, 'x')
8460
8460
sage: S.<y> = NumberField(x^3 + x + 1)
8461
- sage: S.coerce(int(4)) # indirect doctest
8461
+ sage: S.coerce(int(4)) # indirect doctest
8462
8462
4
8463
8463
sage: S.coerce(-Integer(2))
8464
8464
-2
@@ -8919,21 +8919,21 @@ def _subfields_helper(self, degree=0, name=None, both_maps=True, optimize=False)
8919
8919
sage: K, CDF(a)
8920
8920
(Number Field in a with defining polynomial x^4 - 23 with a = 2.189938703094843?,
8921
8921
2.1899387030948425)
8922
- sage: Ss = K.subfields(); len(Ss) # indirect doctest
8922
+ sage: Ss = K.subfields(); len(Ss) # indirect doctest
8923
8923
3
8924
8924
sage: diffs = [ S.coerce_embedding()(S.gen()) - CDF(S_into_K(S.gen())) for S, S_into_K, _ in Ss ]
8925
8925
sage: all(abs(diff) < 1e-5 for diff in diffs)
8926
8926
True
8927
8927
8928
- sage: L1, _, _ = K.subfields(2)[0]; L1, CDF(L1.gen()) # indirect doctest
8928
+ sage: L1, _, _ = K.subfields(2)[0]; L1, CDF(L1.gen()) # indirect doctest
8929
8929
(Number Field in a0 with defining polynomial x^2 - 23 with a0 = -4.795831523312720?,
8930
8930
-4.795831523312719)
8931
8931
8932
8932
If we take a different embedding of the large field, we get a
8933
8933
different embedding of the degree 2 subfield::
8934
8934
8935
8935
sage: K.<a> = NumberField(x^4 - 23, embedding=-50)
8936
- sage: L2, _, _ = K.subfields(2)[0]; L2, CDF(L2.gen()) # indirect doctest
8936
+ sage: L2, _, _ = K.subfields(2)[0]; L2, CDF(L2.gen()) # indirect doctest
8937
8937
(Number Field in a0 with defining polynomial x^2 - 23 with a0 = -4.795831523312720?,
8938
8938
-4.795831523312719)
8939
8939
@@ -11123,7 +11123,7 @@ def _latex_(self):
11123
11123
sage: Z = CyclotomicField(4)
11124
11124
sage: Z.gen()
11125
11125
zeta4
11126
- sage: latex(Z) # indirect doctest
11126
+ sage: latex(Z) # indirect doctest
11127
11127
\Bold{Q}(\zeta_{4})
11128
11128
11129
11129
Latex printing respects the generator name::
@@ -11171,7 +11171,7 @@ def _coerce_map_from_(self, K):
11171
11171
11172
11172
sage: K.<a> = CyclotomicField(12)
11173
11173
sage: L.<b> = CyclotomicField(132)
11174
- sage: L.coerce_map_from(K) # indirect doctest
11174
+ sage: L.coerce_map_from(K) # indirect doctest
11175
11175
Generic morphism:
11176
11176
From: Cyclotomic Field of order 12 and degree 4
11177
11177
To: Cyclotomic Field of order 132 and degree 40
@@ -11401,7 +11401,7 @@ def _element_constructor_(self, x, check=True):
11401
11401
sage: a = k42.gen(0)
11402
11402
sage: b = a^7; b
11403
11403
zeta42^7
11404
- sage: k6(b) # indirect doctest
11404
+ sage: k6(b) # indirect doctest
11405
11405
zeta6
11406
11406
sage: b^2
11407
11407
zeta42^7 - 1
@@ -11519,7 +11519,7 @@ def _coerce_from_gap(self, x):
11519
11519
-3*E(5)-2*E(5)^2-3*E(5)^3-3*E(5)^4
11520
11520
sage: z^7 + 3 # needs sage.libs.gap
11521
11521
z^2 + 3
11522
- sage: k5(w) # indirect doctest # needs sage.libs.gap
11522
+ sage: k5(w) # indirect doctest # needs sage.libs.gap
11523
11523
z^2 + 3
11524
11524
11525
11525
It may be that GAP uses a name for the generator of the cyclotomic field.
@@ -11576,7 +11576,7 @@ def _Hom_(self, codomain, cat=None):
11576
11576
sage: x = polygen(ZZ, 'x')
11577
11577
sage: K.<a> = NumberField(x^2 + 3); K
11578
11578
Number Field in a with defining polynomial x^2 + 3
11579
- sage: CyclotomicField(3).Hom(K) # indirect doctest
11579
+ sage: CyclotomicField(3).Hom(K) # indirect doctest
11580
11580
Set of field embeddings
11581
11581
from Cyclotomic Field of order 3 and degree 2
11582
11582
to Number Field in a with defining polynomial x^2 + 3
@@ -12187,7 +12187,7 @@ def _coerce_map_from_(self, K):
12187
12187
EXAMPLES::
12188
12188
12189
12189
sage: K.<a> = QuadraticField(-3)
12190
- sage: f = K.coerce_map_from(QQ); f # indirect doctest
12190
+ sage: f = K.coerce_map_from(QQ); f # indirect doctest
12191
12191
Natural morphism:
12192
12192
From: Rational Field
12193
12193
To: Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I
@@ -12196,7 +12196,7 @@ def _coerce_map_from_(self, K):
12196
12196
sage: parent(f(3/5)) is K
12197
12197
True
12198
12198
12199
- sage: g = K.coerce_map_from(ZZ); g # indirect doctest
12199
+ sage: g = K.coerce_map_from(ZZ); g # indirect doctest
12200
12200
Natural morphism:
12201
12201
From: Integer Ring
12202
12202
To: Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I
@@ -12220,11 +12220,11 @@ def _latex_(self):
12220
12220
EXAMPLES::
12221
12221
12222
12222
sage: Z = QuadraticField(7)
12223
- sage: latex(Z) # indirect doctest
12223
+ sage: latex(Z) # indirect doctest
12224
12224
\Bold{Q}(\sqrt{7})
12225
12225
12226
12226
sage: Z = QuadraticField(7, latex_name='x')
12227
- sage: latex(Z) # indirect doctest
12227
+ sage: latex(Z) # indirect doctest
12228
12228
\Bold{Q}[x]/(x^{2} - 7)
12229
12229
"""
12230
12230
v = self .latex_variable_names ()[0 ]
@@ -12243,7 +12243,7 @@ def _polymake_init_(self):
12243
12243
EXAMPLES::
12244
12244
12245
12245
sage: Z = QuadraticField(7)
12246
- sage: polymake(Z) # optional - jupymake # indirect doctest
12246
+ sage: polymake(Z) # optional - jupymake # indirect doctest
12247
12247
QuadraticExtension
12248
12248
12249
12249
"""
0 commit comments