Skip to content

Commit 42445f4

Browse files
removed commented out code
1 parent 8b7e74c commit 42445f4

File tree

1 file changed

+0
-175
lines changed

1 file changed

+0
-175
lines changed

src/sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py

Lines changed: 0 additions & 175 deletions
Original file line numberDiff line numberDiff line change
@@ -691,12 +691,6 @@ def _mul_(self, other_dynamical_semigroup):
691691
ValueError: left dynamical semigroup's domain must equal right dynamical semigroup's codomain
692692
693693
"""
694-
# if isinstance(self, DynamicalSemigroup_projective) and \
695-
# not isinstance(other_dynamical_semigroup, DynamicalSemigroup_projective):
696-
# raise TypeError("can only multiply `DynamicalSemigroup_projective` objects")
697-
# if isinstance(self, DynamicalSemigroup_affine) and \
698-
# not isinstance(other_dynamical_semigroup, DynamicalSemigroup_affine):
699-
# raise TypeError("can only multiply `DynamicalSemigroup_projective` objects")
700694
if type(self) != type(other_dynamical_semigroup):
701695
raise TypeError("can only multiply dynamical semigroups with other dynamical semigroups of the same type")
702696
if self.domain() != other_dynamical_semigroup.codomain():
@@ -1035,175 +1029,6 @@ def dehomogenize(self, n):
10351029
new_systems.append(new_system)
10361030
return DynamicalSemigroup_affine(new_systems)
10371031

1038-
# def _mul_(self, other_dynamical_semigroup):
1039-
# r"""
1040-
# Return a new :class:`DynamicalSemigroup_projective` that is the result of multiplying
1041-
# this dynamical semigroup with another dynamical semigroup using the * operator.
1042-
1043-
# Let `f` be a dynamical semigroup with generators `\{ f_1, f_2, \dots, f_m \}`
1044-
# and `g` be a dynamical semigroup with generators `\{ g_1, g_2, \dots, g_n \}`.
1045-
# The product `f * g` has generators
1046-
# `\{ f_i(g_j) : 1 \leq i \leq m, 1 \leq j \leq n \} \cup \{ g_j(f_i) : 1 \leq i \leq m, 1 \leq j \leq n \}`.
1047-
1048-
# INPUT:
1049-
1050-
# - ``other_dynamical_semigroup`` -- a dynamical semigroup over projective space
1051-
1052-
# OUTPUT: :class:`DynamicalSemigroup_projective`
1053-
1054-
# EXAMPLES::
1055-
1056-
# sage: P.<x,y> = ProjectiveSpace(QQ, 1)
1057-
# sage: f1 = DynamicalSystem([x, y], P)
1058-
# sage: f2 = DynamicalSystem([x^2, y^2], P)
1059-
# sage: g1 = DynamicalSystem([x^3, y^3], P)
1060-
# sage: g2 = DynamicalSystem([x^4, y^4], P)
1061-
# sage: f = DynamicalSemigroup((f1, f2))
1062-
# sage: g = DynamicalSemigroup((g1, g2))
1063-
# sage: f*g
1064-
# Dynamical semigroup over Projective Space of dimension 1 over Rational Field defined by 8 dynamical systems:
1065-
# Dynamical System of Projective Space of dimension 1 over Rational Field
1066-
# Defn: Defined on coordinates by sending (x : y) to
1067-
# (x^3 : y^3)
1068-
# Dynamical System of Projective Space of dimension 1 over Rational Field
1069-
# Defn: Defined on coordinates by sending (x : y) to
1070-
# (x^4 : y^4)
1071-
# Dynamical System of Projective Space of dimension 1 over Rational Field
1072-
# Defn: Defined on coordinates by sending (x : y) to
1073-
# (x^6 : y^6)
1074-
# Dynamical System of Projective Space of dimension 1 over Rational Field
1075-
# Defn: Defined on coordinates by sending (x : y) to
1076-
# (x^8 : y^8)
1077-
# Dynamical System of Projective Space of dimension 1 over Rational Field
1078-
# Defn: Defined on coordinates by sending (x : y) to
1079-
# (x^3 : y^3)
1080-
# Dynamical System of Projective Space of dimension 1 over Rational Field
1081-
# Defn: Defined on coordinates by sending (x : y) to
1082-
# (x^6 : y^6)
1083-
# Dynamical System of Projective Space of dimension 1 over Rational Field
1084-
# Defn: Defined on coordinates by sending (x : y) to
1085-
# (x^4 : y^4)
1086-
# Dynamical System of Projective Space of dimension 1 over Rational Field
1087-
# Defn: Defined on coordinates by sending (x : y) to
1088-
# (x^8 : y^8)
1089-
1090-
# TESTS::
1091-
1092-
# sage: P.<x,y> = ProjectiveSpace(QQ, 1)
1093-
# sage: f1 = DynamicalSystem([x, y], P)
1094-
# sage: f2 = DynamicalSystem([x^2, y^2], P)
1095-
# sage: g1 = DynamicalSystem([x^3, y^3], P)
1096-
# sage: g2 = DynamicalSystem([x^4, y^4], P)
1097-
# sage: f = DynamicalSemigroup((f1, f2))
1098-
# sage: g = DynamicalSemigroup((g1, g2))
1099-
# sage: f*g == g*f
1100-
# True
1101-
1102-
# ::
1103-
1104-
# sage: P.<x,y> = ProjectiveSpace(QQ, 1)
1105-
# sage: Q.<z,w> = ProjectiveSpace(QQ, 1)
1106-
# sage: f1 = DynamicalSystem([x, y], P)
1107-
# sage: f2 = DynamicalSystem([x^2, y^2], P)
1108-
# sage: g1 = DynamicalSystem([z^3, w^3], Q)
1109-
# sage: g2 = DynamicalSystem([z^4, w^4], Q)
1110-
# sage: f = DynamicalSemigroup((f1, f2))
1111-
# sage: g = DynamicalSemigroup((g1, g2))
1112-
# sage: f*g == g*f
1113-
# True
1114-
1115-
# ::
1116-
1117-
# sage: P.<x,y> = ProjectiveSpace(QQ, 1)
1118-
# sage: f1 = DynamicalSystem([x, y], P)
1119-
# sage: f2 = DynamicalSystem([x^2, y^2], P)
1120-
# sage: g1 = DynamicalSystem([x^3, y^3], P)
1121-
# sage: g2 = DynamicalSystem([x^4, y^4], P)
1122-
# sage: h1 = DynamicalSystem([x^5, y^5], P)
1123-
# sage: h2 = DynamicalSystem([x^6, y^6], P)
1124-
# sage: f = DynamicalSemigroup((f1, f2))
1125-
# sage: g = DynamicalSemigroup((g1, g2))
1126-
# sage: h = DynamicalSemigroup((h1, h2))
1127-
# sage: f*(g*h) == (f*g)*h
1128-
# True
1129-
1130-
# ::
1131-
1132-
# sage: P.<x,y> = ProjectiveSpace(QQ, 1)
1133-
# sage: Q.<z,w> = ProjectiveSpace(QQ, 1)
1134-
# sage: R.<u,v> = ProjectiveSpace(QQ, 1)
1135-
# sage: f1 = DynamicalSystem([x, y], P)
1136-
# sage: f2 = DynamicalSystem([x^2, y^2], P)
1137-
# sage: g1 = DynamicalSystem([z^3, z^3], Q)
1138-
# sage: g2 = DynamicalSystem([z^4, w^4], Q)
1139-
# sage: h1 = DynamicalSystem([u^5, v^5], R)
1140-
# sage: h2 = DynamicalSystem([u^6, v^6], R)
1141-
# sage: f = DynamicalSemigroup((f1, f2))
1142-
# sage: g = DynamicalSemigroup((g1, g2))
1143-
# sage: h = DynamicalSemigroup((h1, h2))
1144-
# sage: f*(g*h) == (f*g)*h
1145-
# True
1146-
1147-
# ::
1148-
1149-
# sage: P.<x,y> = ProjectiveSpace(QQ, 1)
1150-
# sage: A.<z> = AffineSpace(QQ, 1)
1151-
# sage: f1 = DynamicalSystem([x, y], P)
1152-
# sage: f2 = DynamicalSystem([x^2, y^2], P)
1153-
# sage: g1 = DynamicalSystem(z^3, A)
1154-
# sage: g2 = DynamicalSystem(z^4, A)
1155-
# sage: f = DynamicalSemigroup((f1, f2))
1156-
# sage: g = DynamicalSemigroup((g1, g2))
1157-
# sage: f*g
1158-
# Traceback (most recent call last):
1159-
# ...
1160-
# TypeError: can only multiply `DynamicalSemigroup_projective` objects
1161-
1162-
# ::
1163-
1164-
# sage: P.<x,y> = ProjectiveSpace(QQ, 1)
1165-
# sage: Q.<u, v, w> = ProjectiveSpace(QQ, 2)
1166-
# sage: f1 = DynamicalSystem([x, y], P)
1167-
# sage: f2 = DynamicalSystem([x^2, y^2], P)
1168-
# sage: g1 = DynamicalSystem([u^3, v^3, w^3], Q)
1169-
# sage: g2 = DynamicalSystem([u^4, v^4, w^4], Q)
1170-
# sage: f = DynamicalSemigroup((f1, f2))
1171-
# sage: g = DynamicalSemigroup((g1, g2))
1172-
# sage: f*g
1173-
# Traceback (most recent call last):
1174-
# ...
1175-
# ValueError: cannot multiply dynamical semigroups of different dimensions
1176-
# """
1177-
# if isinstance(self, DynamicalSemigroup_projective) and \
1178-
# not isinstance(other_dynamical_semigroup, DynamicalSemigroup_projective):
1179-
# raise TypeError("can only multiply `DynamicalSemigroup_projective` objects")
1180-
# if isinstance(self, DynamicalSemigroup_affine) and \
1181-
# not isinstance(other_dynamical_semigroup, DynamicalSemigroup_affine):
1182-
# raise TypeError("can only multiply `DynamicalSemigroup_projective` objects")
1183-
# if self.domain() != other_dynamical_semigroup.codomain():
1184-
# raise ValueError("left dynamical semigroup's domain must equal right dynamical semigroup's codomain")
1185-
# composite_systems = []
1186-
# my_polys = self.defining_polynomials()
1187-
# other_polys = other_dynamical_semigroup.defining_polynomials()
1188-
# for my_poly in my_polys:
1189-
# for other_poly in other_polys:
1190-
# composite_poly = []
1191-
# for coordinate_poly in my_poly:
1192-
# composite_poly.append(coordinate_poly(other_poly))
1193-
# composite_system = DynamicalSystem_projective(composite_poly)
1194-
# composite_systems.append(composite_system)
1195-
# for other_poly in other_polys:
1196-
# for my_poly in my_polys:
1197-
# composite_poly = []
1198-
# for coordinate_poly in other_poly:
1199-
# composite_poly.append(coordinate_poly(my_poly))
1200-
# composite_system = DynamicalSystem_projective(composite_poly)
1201-
# composite_systems.append(composite_system)
1202-
# for f in self.defining_systems():
1203-
# for g in other_dynamical_semigroup.defining_systems():
1204-
# composite_systems.append(f*g)
1205-
# return DynamicalSemigroup_projective(composite_systems)
1206-
12071032
class DynamicalSemigroup_projective_field(DynamicalSemigroup_projective):
12081033
pass
12091034

0 commit comments

Comments
 (0)