@@ -134,7 +134,7 @@ def __classcall__(cls, *args, **kwds):
134
134
135
135
EXAMPLES::
136
136
137
- sage: SymmetricGroup(['a','b']).domain() # indirect doctest
137
+ sage: SymmetricGroup(['a','b']).domain() # indirect doctest
138
138
{'a', 'b'}
139
139
"""
140
140
domain = kwds .pop ('domain' , None )
@@ -679,7 +679,7 @@ def __init__(self, domain=None):
679
679
Alternating group of order 6!/2 as a permutation group
680
680
sage: G.category()
681
681
Category of finite enumerated permutation groups
682
- sage: TestSuite(G).run() # long time
682
+ sage: TestSuite(G).run() # long time
683
683
684
684
sage: G = AlternatingGroup([1,2,4,5])
685
685
sage: G
@@ -1063,14 +1063,15 @@ def __init__(self, n):
1063
1063
1064
1064
EXAMPLES::
1065
1065
1066
- sage: G = groups.permutation.Janko(1); G # optional - gap_package_atlasrep internet
1066
+ sage: G = groups.permutation.Janko(1); G # optional - gap_package_atlasrep internet
1067
1067
Janko group J1 of order 175560 as a permutation group
1068
1068
1069
1069
TESTS::
1070
1070
1071
- sage: G.category() # optional - gap_package_atlasrep internet
1071
+ sage: G.category() # optional - gap_package_atlasrep internet
1072
1072
Category of finite enumerated permutation groups
1073
- sage: TestSuite(G).run(skip=["_test_enumerated_set_contains", "_test_enumerated_set_iter_list"]) # optional - gap_package_atlasrep internet
1073
+ sage: TestSuite(G).run(skip=["_test_enumerated_set_contains", # optional - gap_package_atlasrep internet
1074
+ ....: "_test_enumerated_set_iter_list"])
1074
1075
"""
1075
1076
if n not in [1 , 2 , 3 ]:
1076
1077
raise ValueError ("n must belong to {1,2,3}" )
@@ -1083,7 +1084,7 @@ def _repr_(self):
1083
1084
"""
1084
1085
EXAMPLES::
1085
1086
1086
- sage: G = groups.permutation.Janko(1); G # optional - gap_package_atlasrep internet
1087
+ sage: G = groups.permutation.Janko(1); G # optional - gap_package_atlasrep internet
1087
1088
Janko group J1 of order 175560 as a permutation group
1088
1089
"""
1089
1090
return "Janko group J%s of order %s as a permutation group" % (self ._n , self .order ())
@@ -1096,14 +1097,15 @@ def __init__(self):
1096
1097
1097
1098
EXAMPLES::
1098
1099
1099
- sage: G = groups.permutation.SuzukiSporadic(); G # optional - gap_package_atlasrep internet
1100
+ sage: G = groups.permutation.SuzukiSporadic(); G # optional - gap_package_atlasrep internet
1100
1101
Sporadic Suzuki group acting on 1782 points
1101
1102
1102
1103
TESTS::
1103
1104
1104
1105
sage: G.category() # optional - gap_package_atlasrep internet
1105
1106
Category of finite enumerated permutation groups
1106
- sage: TestSuite(G).run(skip=["_test_enumerated_set_contains", "_test_enumerated_set_iter_list"]) # optional - gap_package_atlasrep internet
1107
+ sage: TestSuite(G).run(skip=["_test_enumerated_set_contains", # optional - gap_package_atlasrep internet
1108
+ ....: "_test_enumerated_set_iter_list"])
1107
1109
"""
1108
1110
libgap .load_package ("atlasrep" )
1109
1111
PermutationGroup_generic .__init__ (self , gap_group = 'AtlasGroup("Suz")' )
@@ -1112,7 +1114,7 @@ def _repr_(self):
1112
1114
"""
1113
1115
EXAMPLES::
1114
1116
1115
- sage: G = groups.permutation.SuzukiSporadic(); G # optional - gap_package_atlasrep internet
1117
+ sage: G = groups.permutation.SuzukiSporadic(); G # optional - gap_package_atlasrep internet
1116
1118
Sporadic Suzuki group acting on 1782 points
1117
1119
"""
1118
1120
return "Sporadic Suzuki group acting on 1782 points"
@@ -1987,7 +1989,7 @@ def _repr_(self):
1987
1989
"""
1988
1990
TESTS::
1989
1991
1990
- sage: TransitiveGroups() # indirect doctest
1992
+ sage: TransitiveGroups() # indirect doctest
1991
1993
Transitive Groups
1992
1994
"""
1993
1995
return "Transitive Groups"
@@ -2101,7 +2103,7 @@ def __iter__(self):
2101
2103
"""
2102
2104
EXAMPLES::
2103
2105
2104
- sage: list(TransitiveGroups(5)) # indirect doctest
2106
+ sage: list(TransitiveGroups(5)) # indirect doctest
2105
2107
[Transitive group number 1 of degree 5,
2106
2108
Transitive group number 2 of degree 5,
2107
2109
Transitive group number 3 of degree 5,
@@ -2375,7 +2377,7 @@ class PrimitiveGroupsAll(DisjointUnionEnumeratedSets):
2375
2377
2376
2378
The following test is broken, see :trac:`22576`::
2377
2379
2378
- sage: TestSuite(PrimitiveGroups()).run() # known bug # long time
2380
+ sage: TestSuite(PrimitiveGroups()).run() # known bug, long time
2379
2381
"""
2380
2382
def __init__ (self ):
2381
2383
"""
@@ -2399,7 +2401,7 @@ def _repr_(self):
2399
2401
2400
2402
TESTS::
2401
2403
2402
- sage: PrimitiveGroups() # indirect doctest
2404
+ sage: PrimitiveGroups() # indirect doctest
2403
2405
Primitive Groups
2404
2406
"""
2405
2407
return "Primitive Groups"
@@ -2533,7 +2535,7 @@ def __iter__(self):
2533
2535
"""
2534
2536
EXAMPLES::
2535
2537
2536
- sage: list(PrimitiveGroups(5)) # indirect doctest
2538
+ sage: list(PrimitiveGroups(5)) # indirect doctest
2537
2539
[C(5), D(2*5), AGL(1, 5), A(5), S(5)]
2538
2540
"""
2539
2541
for n in range (1 , self .cardinality () + 1 ):
@@ -2650,7 +2652,7 @@ def __init__(self, n, q, name='a'):
2650
2652
2651
2653
sage: G.category()
2652
2654
Category of finite enumerated permutation groups
2653
- sage: TestSuite(G).run() # long time
2655
+ sage: TestSuite(G).run() # long time
2654
2656
2655
2657
TESTS::
2656
2658
@@ -2718,7 +2720,7 @@ def __init__(self, n, q, name='a'):
2718
2720
2719
2721
sage: G.category()
2720
2722
Category of finite enumerated permutation groups
2721
- sage: TestSuite(G).run() # long time
2723
+ sage: TestSuite(G).run() # long time
2722
2724
2723
2725
TESTS::
2724
2726
@@ -2784,7 +2786,7 @@ def ramification_module_decomposition_hurwitz_curve(self):
2784
2786
EXAMPLES::
2785
2787
2786
2788
sage: G = PSL(2,13)
2787
- sage: G.ramification_module_decomposition_hurwitz_curve() # random, optional - gap_packages
2789
+ sage: G.ramification_module_decomposition_hurwitz_curve() # random, optional - gap_packages
2788
2790
[0, 7, 7, 12, 12, 12, 13, 15, 14]
2789
2791
2790
2792
This means, for example, that the trivial representation does not
@@ -2834,7 +2836,7 @@ def ramification_module_decomposition_modular_curve(self):
2834
2836
EXAMPLES::
2835
2837
2836
2838
sage: G = PSL(2,7)
2837
- sage: G.ramification_module_decomposition_modular_curve() # random, optional - gap_packages
2839
+ sage: G.ramification_module_decomposition_modular_curve() # random, optional - gap_packages
2838
2840
[0, 4, 3, 6, 7, 8]
2839
2841
2840
2842
This means, for example, that the trivial representation does not
0 commit comments