Skip to content

Commit 438803d

Browse files
committed
Fixing some details; adding one more doctest for coverage.
1 parent d7656a8 commit 438803d

File tree

2 files changed

+20
-9
lines changed

2 files changed

+20
-9
lines changed

src/sage/algebras/orlik_solomon.py

Lines changed: 10 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -541,7 +541,7 @@ def aomoto_complex(self, omega):
541541
Return the Aomoto complex of ``self`` defined by ``omega``.
542542
543543
Let `A(M)` be an Orlik-Solomon algebra of a matroid `M`. Let
544-
`\omega \in A(M)_1` be an element of (homoegenous) degree 1.
544+
`\omega \in A(M)_1` be an element of (homogeneous) degree 1.
545545
The Aomoto complete is the chain complex defined on `A(M)`
546546
with the differential defined by `\omega \wedge`.
547547
@@ -570,6 +570,15 @@ def aomoto_complex(self, omega):
570570
1: Vector space of dimension 1 over Rational Field,
571571
2: Vector space of dimension 1 over Rational Field}
572572
573+
TESTS::
574+
575+
sage: OS = hyperplane_arrangements.braid(4).orlik_solomon_algebra(QQ)
576+
sage: gens = OS.algebra_generators()
577+
sage: OS.aomoto_complex(gens[0] * gens[1] * gens[3])
578+
Traceback (most recent call last):
579+
...
580+
ValueError: omega must be a homogeneous element of degree 1
581+
573582
REFERENCES:
574583
575584
- [BY2016]_

src/sage/categories/filtered_modules_with_basis.py

Lines changed: 10 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -259,10 +259,11 @@ def hilbert_series(self, prec=None):
259259
260260
H(t) = \sum_{n=0}^{\infty} \ell(M_n / M_{n-1}) t^n,
261261
262-
where `\ell(M_n)` is the *length* of `M_n`, which is the
262+
where `\ell(N)` is the *length* of `N`, which is the
263263
longest chain of submodules (over `R`), and by convention
264-
`M_{-1} = \{0\}`. By the assumptions of the category, `M_n` is a
265-
free `R`-module, and so `\ell(M_n)` is equal to the rank of `M_n`.
264+
`M_{-1} = \{0\}`. By the assumptions of the category,
265+
`M_n / M_{n-1}` is a free `R`-module, and so `\ell(M_n / M_{n-1})`
266+
is equal to the rank of `M_n / M_{n-1}`.
266267
267268
INPUT:
268269
@@ -1171,12 +1172,13 @@ def hilbert_series(self, prec=None):
11711172
11721173
.. MATH::
11731174
1174-
H(t) = \sum_{n=0}^{\infty} \ell(M_n) t^n,
1175+
H(t) = \sum_{n=0}^{\infty} \ell(M_n / M_{n-1}) t^n,
11751176
1176-
where `\ell(M_n)` is the *length* of `M_n`, which is the
1177-
longest chain of submodules (over `R`). By the assumptions of
1178-
the category, `M_n` is a free `R`-module, and so `\ell(M_n)`
1179-
is equal to the rank of `M_n`.
1177+
where `\ell(N)` is the *length* of `N`, which is the
1178+
longest chain of submodules (over `R`), and by convention
1179+
`M_{-1} = \{0\}`. By the assumptions of the category,
1180+
`M_n / M_{n-1}` is a free `R`-module, and so
1181+
`\ell(M_n / M_{n-1})` is equal to the rank of `M_n / M_{n-1}`.
11801182
11811183
EXAMPLES::
11821184

0 commit comments

Comments
 (0)