@@ -160,23 +160,23 @@ def algdep(z, degree, known_bits=None, use_bits=None, known_digits=None,
160
160
161
161
TESTS::
162
162
163
- sage: algdep(complex("1+2j"), 4) # needs sage.libs.pari
163
+ sage: algdep(complex("1+2j"), 4) # needs sage.libs.pari sage.rings.complex_double
164
164
x^2 - 2*x + 5
165
165
166
166
We get an irreducible polynomial even if PARI returns a reducible
167
167
one::
168
168
169
169
sage: z = CDF(1, RR(3).sqrt())/2 # needs sage.rings.complex_double
170
- sage: pari(z).algdep(5) # needs sage.libs.pari sage.symbolic
170
+ sage: pari(z).algdep(5) # needs sage.libs.pari sage.rings.complex_double sage. symbolic
171
171
x^5 + x^2
172
- sage: algdep(z, 5) # needs sage.libs.pari sage.symbolic
172
+ sage: algdep(z, 5) # needs sage.libs.pari sage.rings.complex_double sage. symbolic
173
173
x^2 - x + 1
174
174
175
175
Check that cases where a constant polynomial might look better
176
176
get handled correctly::
177
177
178
178
sage: z = CC(-1)**(1/3) # needs sage.rings.real_mpfr
179
- sage: algdep(z, 1) # needs sage.libs.pari
179
+ sage: algdep(z, 1) # needs sage.libs.pari sage.symbolic
180
180
x
181
181
182
182
Tests with numpy and gmpy2 numbers::
@@ -1639,7 +1639,7 @@ class Sigma:
1639
1639
3672
1640
1640
sage: sigma(factorial(150), 12).mod(691) # needs sage.libs.pari
1641
1641
176
1642
- sage: RR(sigma(factorial(133),20)) # needs sage.libs.pari
1642
+ sage: RR(sigma(factorial(133),20)) # needs sage.libs.pari sage.rings.real_mpfr
1643
1643
2.80414775675747e4523
1644
1644
sage: sigma(factorial(100),0) # needs sage.libs.pari
1645
1645
39001250856960000
@@ -6239,7 +6239,7 @@ def gauss_sum(char_value, finite_field):
6239
6239
6240
6240
EXAMPLES::
6241
6241
6242
- sage: # needs sage.libs.pari
6242
+ sage: # needs sage.libs.pari sage.rings.number_field
6243
6243
sage: from sage.arith.misc import gauss_sum
6244
6244
sage: F = GF(5); q = 5
6245
6245
sage: zq = UniversalCyclotomicField().zeta(q - 1)
@@ -6252,7 +6252,7 @@ def gauss_sum(char_value, finite_field):
6252
6252
sage: [g*g.conjugate() for g in L]
6253
6253
[1, 5, 5, 5, 1]
6254
6254
6255
- sage: # needs sage.libs.pari
6255
+ sage: # needs sage.libs.pari sage.rings.number_field
6256
6256
sage: F = GF(11**2); q = 11**2
6257
6257
sage: zq = UniversalCyclotomicField().zeta(q - 1)
6258
6258
sage: g = gauss_sum(zq**4, F)
@@ -6261,9 +6261,10 @@ def gauss_sum(char_value, finite_field):
6261
6261
6262
6262
TESTS::
6263
6263
6264
+ sage: # needs sage.libs.pari sage.rings.number_field
6264
6265
sage: F = GF(11); q = 11
6265
- sage: zq = UniversalCyclotomicField().zeta(q - 1) # needs sage.libs.pari sage.rings.number_field
6266
- sage: gauss_sum(zq**2, F).n(60) # needs sage.libs.pari sage.rings.number_field
6266
+ sage: zq = UniversalCyclotomicField().zeta(q - 1)
6267
+ sage: gauss_sum(zq**2, F).n(60)
6267
6268
2.6361055643248352 + 2.0126965627574471*I
6268
6269
6269
6270
sage: zq = QQbar.zeta(q - 1) # needs sage.libs.pari sage.rings.number_field
@@ -6281,7 +6282,7 @@ def gauss_sum(char_value, finite_field):
6281
6282
sage: all(D[i].gauss_sum() == gauss_sum(zq**i, F) for i in range(6))
6282
6283
True
6283
6284
6284
- sage: gauss_sum(1, QQ) # needs sage.libs.pari
6285
+ sage: gauss_sum(1, QQ) # needs sage.libs.pari sage.rings.number_field
6285
6286
Traceback (most recent call last):
6286
6287
...
6287
6288
ValueError: second input must be a finite field
0 commit comments