|
32 | 32 | # ****************************************************************************
|
33 | 33 |
|
34 | 34 | from sage.categories.graded_algebras_with_basis import GradedAlgebrasWithBasis
|
35 |
| -from sage.combinat.composition import Composition |
36 |
| -from sage.combinat.integer_vector import IntegerVector, IntegerVectors |
| 35 | +from sage.combinat.integer_vector import IntegerVectors |
37 | 36 | from sage.combinat.free_module import CombinatorialFreeModule
|
38 | 37 | from sage.combinat.permutation import Permutation
|
39 | 38 | from sage.rings.polynomial.infinite_polynomial_ring import InfinitePolynomialRing, InfinitePolynomialRing_sparse
|
40 |
| -from sage.rings.polynomial.infinite_polynomial_element import InfinitePolynomial_sparse |
41 | 39 | from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
42 | 40 | from sage.rings.polynomial.polynomial_ring import PolynomialRing_commutative
|
43 | 41 | from sage.rings.polynomial.multi_polynomial_ring_base import MPolynomialRing_base
|
44 |
| -from sage.rings.rational_field import QQ |
45 |
| -from sage.structure.element import parent |
46 | 42 |
|
47 | 43 | from collections.abc import Collection
|
48 | 44 |
|
@@ -377,7 +373,7 @@ def __classcall_private__(cls, R=None, k=None, poly_ring=None, poly_coeffs=False
|
377 | 373 | if isinstance(R, poly_type[0:2]):
|
378 | 374 | k = R.ngens()
|
379 | 375 | if isinstance(R, InfinitePolynomialRing_sparse) and R.ngens() > 1:
|
380 |
| - raise ValueError(f"Polynomial ring has too many generators") |
| 376 | + raise ValueError("Polynomial ring has too many generators") |
381 | 377 | if isinstance(R.base_ring(), poly_type[0:2]):
|
382 | 378 | # if R is of the form K[t_1, ..., t_n][z_*]
|
383 | 379 | # or K[t_1, ..., t_n][z_1, ..., z_k]
|
@@ -432,7 +428,7 @@ def build_index(m):
|
432 | 428 | R = poly_ring.base_ring()
|
433 | 429 | self._polynomial_ring = poly_ring
|
434 | 430 |
|
435 |
| - self._name = f"Key polynomial basis" |
| 431 | + self._name = "Key polynomial basis" |
436 | 432 |
|
437 | 433 | CombinatorialFreeModule.__init__(self, R, IntegerVectors(k=k),
|
438 | 434 | category=GradedAlgebrasWithBasis(R),
|
@@ -570,7 +566,6 @@ def from_polynomial(self, f):
|
570 | 566 | raise ValueError(f"f must be an element of {self._polynomial_ring}")
|
571 | 567 |
|
572 | 568 | out = self.zero()
|
573 |
| - counter = 0 |
574 | 569 |
|
575 | 570 | while f:
|
576 | 571 | M = f.monomials()[0]
|
@@ -627,7 +622,6 @@ def _divided_difference(P, i, f):
|
627 | 622 | sage: _divided_difference(k, 3, z[1]*z[2]*z[4])
|
628 | 623 | -z_1*z_2
|
629 | 624 | """
|
630 |
| - R = P.polynomial_ring() |
631 | 625 | z = P.poly_gens()
|
632 | 626 |
|
633 | 627 | si_f = f.subs({z[i+1]: z[i], z[i]: z[i+1]})
|
@@ -685,7 +679,6 @@ def _pi_i(P, i, f):
|
685 | 679 | sage: _pi_i(k, 2, z[1]^4*z[2]^2*z[3]*z[4])
|
686 | 680 | z_4*z_3^2*z_2*z_1^4 + z_4*z_3*z_2^2*z_1^4
|
687 | 681 | """
|
688 |
| - R = P.polynomial_ring() |
689 | 682 | z = P.poly_gens()
|
690 | 683 | return _divided_difference(P, i, z[i] * f)
|
691 | 684 |
|
|
0 commit comments