@@ -4099,7 +4099,7 @@ def lucas_q1(mm, IntegerMod_abstract P):
4099
4099
TESTS::
4100
4100
4101
4101
sage: from sage.rings.finite_rings.integer_mod import lucas_q1
4102
- sage: all(lucas_q1(k, a) == BinaryRecurrenceSequence(a, -1, 2, a)(k) # optional - sage.combinat
4102
+ sage: all(lucas_q1(k, a) == BinaryRecurrenceSequence(a, -1, 2, a)(k) # optional - sage.combinat sage.modules
4103
4103
....: for a in Integers(23)
4104
4104
....: for k in range(13))
4105
4105
True
@@ -4167,15 +4167,16 @@ def lucas(k, P, Q=1, n=None):
4167
4167
sage: p = randint( 0,100000)
4168
4168
sage: q = randint( 0,100000)
4169
4169
sage: n = randint( 1,100)
4170
- sage: all( lucas( k, p, q, n) [0 ] == Mod( lucas_number2( k, p, q) , n) # optional - sage. combinat
4170
+ sage: all( lucas( k, p, q, n) [0 ] == Mod( lucas_number2( k, p, q) , n) # optional - sage. combinat sage . libs . gap
4171
4171
.... : for k in Integers( 20))
4172
4172
True
4173
4173
sage: from sage. rings. finite_rings. integer_mod import lucas
4174
4174
sage: p = randint( 0,100000)
4175
4175
sage: q = randint( 0,100000)
4176
4176
sage: n = randint( 1,100)
4177
4177
sage: k = randint( 0,100)
4178
- sage: lucas( k, p, q, n) == [Mod(lucas_number2(k, p, q), n), Mod(q^(int(k/2)), n) ] # optional - sage. combinat
4178
+ sage: lucas( k, p, q, n) == [Mod(lucas_number2(k, p, q), n), # optional - sage.combinat
4179
+ ....: Mod(q^(int(k/2)), n) ]
4179
4180
True
4180
4181
4181
4182
EXAMPLES::
0 commit comments