@@ -356,6 +356,7 @@ def random_matrix(ring, nrows, ncols=None, algorithm='randomize', implementation
356
356
....: A = random_matrix(*args, **kwds)
357
357
....: density_sum += float(A.density())
358
358
359
+ sage: # needs sage.libs.flint (otherwise timeout)
359
360
sage: density_sum = 0.0
360
361
sage: total_count = 0.0
361
362
sage: add_sample(ZZ, 5, x=-10, y=10, density=0.75)
@@ -402,7 +403,7 @@ def random_matrix(ring, nrows, ncols=None, algorithm='randomize', implementation
402
403
One can prescribe a specific matrix implementation::
403
404
404
405
sage: K.<a> = FiniteField(2^8) # needs sage.rings.finite_rings
405
- sage: type(random_matrix(K, 2, 5)) # needs sage.rings.finite_rings
406
+ sage: type(random_matrix(K, 2, 5)) # needs sage.rings.finite_rings sage.libs.m4ri
406
407
<class 'sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense'>
407
408
sage: type(random_matrix(K, 2, 5, implementation="generic")) # needs sage.rings.finite_rings
408
409
<class 'sage.matrix.matrix_generic_dense.Matrix_generic_dense'>
@@ -1288,14 +1289,18 @@ def elementary_matrix(arg0, arg1=None, **kwds):
1288
1289
sage: E.parent()
1289
1290
Full MatrixSpace of 4 by 4 dense matrices over Rational Field
1290
1291
1292
+ sage: # needs sage.symbolic
1291
1293
sage: E = elementary_matrix(4, row1=1, scale=I)
1292
1294
sage: E.parent()
1293
- Full MatrixSpace of 4 by 4 dense matrices over Number Field in I with defining polynomial x^2 + 1 with I = 1*I
1295
+ Full MatrixSpace of 4 by 4 dense matrices over
1296
+ Number Field in I with defining polynomial x^2 + 1 with I = 1*I
1294
1297
1298
+ sage: # needs sage.rings.complex_double
1295
1299
sage: E = elementary_matrix(4, row1=1, scale=CDF(I))
1296
1300
sage: E.parent()
1297
1301
Full MatrixSpace of 4 by 4 dense matrices over Complex Double Field
1298
1302
1303
+ sage: # needs sage.rings.number_field
1299
1304
sage: E = elementary_matrix(4, row1=1, scale=QQbar(I))
1300
1305
sage: E.parent()
1301
1306
Full MatrixSpace of 4 by 4 dense matrices over Algebraic Field
@@ -3109,7 +3114,8 @@ def random_diagonalizable_matrix(parent,eigenvalues=None,dimensions=None):
3109
3114
3110
3115
Eigenvalues must all be integers. ::
3111
3116
3112
- sage: random_matrix(QQ,3,algorithm='diagonalizable', eigenvalues=[2+I,2-I,2],dimensions=[1,1,1])
3117
+ sage: random_matrix(QQ, 3, algorithm='diagonalizable', # needs sage.symbolic
3118
+ ....: eigenvalues=[2+I, 2-I, 2], dimensions=[1,1,1])
3113
3119
Traceback (most recent call last):
3114
3120
...
3115
3121
TypeError: eigenvalues must be integers.
0 commit comments