Skip to content

Commit 513323f

Browse files
committed
fix refrences and EXAMPLES::
1 parent e4e37c1 commit 513323f

File tree

2 files changed

+10
-10
lines changed

2 files changed

+10
-10
lines changed

src/doc/en/reference/references/index.rst

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -269,9 +269,6 @@ REFERENCES:
269269
finite Drinfeld modules.* manuscripta mathematica 93, 1 (01 Aug 1997),
270270
369–379. https://doi.org/10.1007/BF02677478
271271
272-
.. [Anna1987] Lubiw, Anna. Doubly Lexical Orderings of Matrices.
273-
SIAM Journal on Computing 16.5 (1987): 854-879.
274-
275272
.. [ANR2023] Robert Angarone, Anastasia Nathanson, and Victor Reiner. *Chow rings of
276273
matroids as permutation representations*, 2023. :arxiv:`2309.14312`.
277274
@@ -3275,6 +3272,10 @@ REFERENCES:
32753272
.. [Haj2000] \M. Hajiaghayi, *Consecutive Ones Property*, 2000.
32763273
http://www-math.mit.edu/~hajiagha/pp11.ps
32773274
3275+
.. [HAM1985] Hoffman, Alan J., Anthonius Wilhelmus Johannes Kolen, and Michel Sakarovitch.
3276+
Totally-balanced and greedy matrices.
3277+
SIAM Journal on Algebraic Discrete Methods 6.4 (1985): 721-730.
3278+
32783279
.. [Han2016] \G.-N. Han, *Hankel continued fraction and its applications*,
32793280
Adv. in Math., 303, 2016, pp. 295-321.
32803281
@@ -3424,10 +3425,6 @@ REFERENCES:
34243425
.. [Hoc] Winfried Hochstaettler, "About the Tic-Tac-Toe Matroid",
34253426
preprint.
34263427
3427-
.. [Hoffman1985] Hoffman, Alan J., Anthonius Wilhelmus Johannes Kolen, and Michel Sakarovitch.
3428-
Totally-balanced and greedy matrices.
3429-
SIAM Journal on Algebraic Discrete Methods 6.4 (1985): 721-730.
3430-
34313428
.. [HJ18] Thorsten Holm and Peter Jorgensen
34323429
*A p-angulated generalisation of Conway and Coxeter's theorem on frieze patterns*,
34333430
International Mathematics Research Notices (2018)
@@ -4702,6 +4699,9 @@ REFERENCES:
47024699
*Verma modules for rank two Heisenberg-Virasoro algebra*.
47034700
Preprint, (2018). :arxiv:`1807.07735`.
47044701
4702+
.. [Lub1987] Lubiw, Anna. Doubly Lexical Orderings of Matrices.
4703+
SIAM Journal on Computing 16.5 (1987): 854-879.
4704+
47054705
.. [Lut2002] Frank H. Lutz, Császár's Torus, Electronic Geometry Model
47064706
No. 2001.02.069
47074707
(2002). http://www.eg-models.de/models/Classical_Models/2001.02.069/_direct_link.html

src/sage/matrix/matrix_mod2_dense.pyx

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2138,7 +2138,7 @@ cdef class Matrix_mod2_dense(matrix_dense.Matrix_dense): # dense or sparse
21382138
21392139
A doubly lexical ordering of a matrix is an ordering of the rows
21402140
and of the columns of the matrix so that both the rows and the
2141-
columns, as vectors, are lexically increasing. See [Anna1987]_.
2141+
columns, as vectors, are lexically increasing. See [Lub1987]_.
21422142
A lexical ordering of vectors is the standard dictionary ordering,
21432143
except that vectors will be read from highest to lowest coordinate.
21442144
Thus row vectors will be compared from right to left, and column
@@ -2163,11 +2163,11 @@ cdef class Matrix_mod2_dense(matrix_dense.Matrix_dense): # dense or sparse
21632163
21642164
ALGORITHM:
21652165
2166-
The algorithm is adapted from section 3 of [Hoffman1985]_. The time
2166+
The algorithm is adapted from section 3 of [HAM1985]_. The time
21672167
complexity of this algorithm is `O(n \cdot m^2)` for a `n \times m`
21682168
matrix.
21692169
2170-
EXAMPLES:
2170+
EXAMPLES::
21712171
21722172
sage: A = Matrix(GF(2), [
21732173
....: [0, 1],

0 commit comments

Comments
 (0)