@@ -420,10 +420,10 @@ def discriminant(self):
420
420
421
421
TESTS::
422
422
423
- sage: M = FreeQuadraticModule(ZZ,2, matrix.identity(2))
423
+ sage: M = FreeQuadraticModule(ZZ, 2, matrix.identity(2))
424
424
sage: M.discriminant()
425
425
-1
426
- sage: M = FreeQuadraticModule(QQ,3, matrix.identity(3))
426
+ sage: M = FreeQuadraticModule(QQ, 3, matrix.identity(3))
427
427
sage: M.discriminant()
428
428
-1
429
429
"""
@@ -602,13 +602,13 @@ def __init__(self, base_ring, rank, degree, inner_product_matrix, sparse=False):
602
602
603
603
def span (self , gens , check = True , already_echelonized = False ):
604
604
"""
605
- Return the R -span of the given list of gens, where R
605
+ Return the `R` -span of the given list of gens, where `R`
606
606
is the base ring of ``self``.
607
607
608
- Note that this span need not be a submodule of self, nor even
608
+ Note that this span need not be a submodule of `` self`` , nor even
609
609
of the ambient space. It must, however, be contained in the
610
610
ambient vector space, i.e., the ambient space tensored with
611
- the fraction field of R .
611
+ the fraction field of `R` .
612
612
613
613
EXAMPLES::
614
614
@@ -629,13 +629,13 @@ def span(self, gens, check=True, already_echelonized=False):
629
629
630
630
def span_of_basis (self , basis , check = True , already_echelonized = False ):
631
631
r"""
632
- Return the free R -module with the given basis, where R
632
+ Return the free `R` -module with the given basis, where `R`
633
633
is the base ring of ``self``.
634
634
635
- Note that this R -module need not be a submodule of ``self``, nor
635
+ Note that this `R` -module need not be a submodule of ``self``, nor
636
636
even of the ambient space. It must, however, be contained in
637
637
the ambient vector space, i.e., the ambient space tensored
638
- with the fraction field of R .
638
+ with the fraction field of `R` .
639
639
640
640
EXAMPLES::
641
641
@@ -721,7 +721,7 @@ def __init__(self, base_field, dimension, degree, inner_product_matrix, sparse=F
721
721
722
722
def span (self , gens , check = True , already_echelonized = False ):
723
723
"""
724
- Return the K -span of the given list of gens, where K is the
724
+ Return the `K` -span of the given list of gens, where `K` is the
725
725
base field of ``self``.
726
726
727
727
Note that this span is a subspace of the ambient vector space,
@@ -761,7 +761,7 @@ def span(self, gens, check=True, already_echelonized=False):
761
761
762
762
def span_of_basis (self , basis , check = True , already_echelonized = False ):
763
763
r"""
764
- Return the free K -module with the given basis, where K
764
+ Return the free `K` -module with the given basis, where `K`
765
765
is the base field of ``self``.
766
766
767
767
Note that this span is a subspace of the ambient vector space,
@@ -924,7 +924,8 @@ def _sparse_module(self):
924
924
True
925
925
"""
926
926
return FreeQuadraticModule (base_ring = self .base_ring (), rank = self .rank (),
927
- inner_product_matrix = self .inner_product_matrix (), sparse = True )
927
+ inner_product_matrix = self .inner_product_matrix (),
928
+ sparse = True )
928
929
929
930
930
931
# #############################################################################
@@ -1265,7 +1266,7 @@ def __init__(self, ambient, basis, inner_product_matrix,
1265
1266
1266
1267
We test that :trac:`23703` is fixed::
1267
1268
1268
- sage: A = FreeQuadraticModule(ZZ,1, matrix.identity(1))
1269
+ sage: A = FreeQuadraticModule(ZZ, 1, matrix.identity(1))
1269
1270
sage: B = A.span([[1/2]])
1270
1271
sage: C = B.span([[1]])
1271
1272
sage: B.intersection(C) == C.intersection(B)
@@ -1336,9 +1337,9 @@ def _latex_(self):
1336
1337
1337
1338
def change_ring (self , R ):
1338
1339
"""
1339
- Return the free module over R obtained by coercing each
1340
- element of ``self`` into a vector over the fraction field of R ,
1341
- then taking the resulting R -module.
1340
+ Return the free module over `R` obtained by coercing each
1341
+ element of ``self`` into a vector over the fraction field of `R` ,
1342
+ then taking the resulting `R` -module.
1342
1343
1343
1344
This raises a ``TypeError`` if coercion is not possible.
1344
1345
@@ -1598,7 +1599,8 @@ class FreeQuadraticModule_submodule_field(free_module.FreeModule_submodule_field
1598
1599
EXAMPLES:
1599
1600
1600
1601
Since this is an embedded vector subspace with echelonized basis,
1601
- the methods ``echelon_coordinates`` and user ``coordinates`` agree::
1602
+ the methods :meth:`echelon_coordinates` and :meth:`coordinates` return the same
1603
+ coordinates::
1602
1604
1603
1605
sage: V = QQ^3
1604
1606
sage: W = V.span([[1,2,3],[4,5,6]])
0 commit comments