Skip to content

Commit 56f0e29

Browse files
committed
add documention about different base fields of charzero
1 parent 21c0e96 commit 56f0e29

File tree

1 file changed

+22
-0
lines changed

1 file changed

+22
-0
lines changed

src/sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -90,6 +90,28 @@ class DrinfeldModule_charzero(DrinfeldModule):
9090
X^2
9191
sage: phi.goss_polynomial(3)
9292
X^3 + (1/(T^2 + T))*X^2
93+
94+
.. RUBRIC:: Base fields of `\mathbb{F}_q[T]`-characteristic zero
95+
96+
The base fields need not only be fraction fields of polynomials
97+
ring. In the following example, we construct a Drinfeld module over
98+
`\mathbb{F}_q((1/T))`, the completion of the rational function field
99+
at the place `1/T`::
100+
101+
sage: A.<T> = GF(2)[]
102+
sage: L.<s> = LaurentSeriesRing(GF(2)) # s = 1/T
103+
sage: phi = DrinfeldModule(A, [1/s, s + s^2 + s^5 + O(s^6), 1+1/s])
104+
sage: phi(T)
105+
(s^-1 + 1)*t^2 + (s + s^2 + s^5 + O(s^6))*t + s^-1
106+
107+
One can also construct Drinfeld modules over SageMath's global
108+
function fields::
109+
110+
sage: A.<T> = GF(5)[]
111+
sage: K.<z> = FunctionField(GF(5)) # z = T
112+
sage: phi = DrinfeldModule(A, [z, 1, z^2])
113+
sage: phi(T)
114+
z^2*t^2 + t + z
93115
"""
94116
@cached_method
95117
def _compute_coefficient_exp(self, k):

0 commit comments

Comments
 (0)