Skip to content

Commit 577b3bd

Browse files
author
Matthias Koeppe
committed
Fix some doctest dataflow warnings
1 parent 998535f commit 577b3bd

File tree

3 files changed

+4
-3
lines changed

3 files changed

+4
-3
lines changed

src/sage/rings/generic.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ class ProductTree:
3636
Similarly, the :meth:`interpolation` method can be used to implement
3737
the inverse Fast Fourier Transform::
3838
39-
sage: tree.interpolation(zs).padded_list(len(ys)) == ys
39+
sage: tree.interpolation(zs).padded_list(len(ys)) == ys # needs sage.rings.finite_rings
4040
True
4141
4242
This class encodes the tree as *layers*: Layer `0` is just a tuple

src/sage/rings/polynomial/polynomial_rational_flint.pyx

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2127,11 +2127,11 @@ cdef class Polynomial_rational_flint(Polynomial):
21272127
21282128
::
21292129
2130-
sage: # needs sage.libs.pari
2130+
sage: # needs sage.groups sage.libs.pari
21312131
sage: f = x^4 - 17*x^3 - 2*x + 1
21322132
sage: G = f.galois_group(pari_group=True); G
21332133
PARI group [24, -1, 5, "S4"] of degree 4
2134-
sage: PermutationGroup(G) # needs sage.groups
2134+
sage: PermutationGroup(G)
21352135
Transitive group number 5 of degree 4
21362136
21372137
You can use KASH or GAP to compute Galois groups as well. The advantage is

src/sage/schemes/curves/affine_curve.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1801,6 +1801,7 @@ def fundamental_group(self, simplified=True, puiseux=False):
18011801
to the algebraic field::
18021802
18031803
sage: # needs sage.rings.number_field
1804+
sage: x = polygen(ZZ)
18041805
sage: a = QQ[x](x^2 + 5).roots(QQbar)[0][0]
18051806
sage: F = NumberField(a.minpoly(), 'a', embedding=a)
18061807
sage: F.inject_variables()

0 commit comments

Comments
 (0)