@@ -46,19 +46,19 @@ def CoxeterGroup(data, implementation="reflection", base_ring=None, index_set=No
46
46
``implementation`` is not specified, the reflection representation
47
47
is returned::
48
48
49
- sage: W = CoxeterGroup(["A",2]); W # optional - sage.libs.gap
49
+ sage: W = CoxeterGroup(["A",2]); W # needs sage.libs.gap
50
50
Finite Coxeter group over Integer Ring with Coxeter matrix:
51
51
[1 3]
52
52
[3 1]
53
53
54
- sage: W = CoxeterGroup(["A",3,1]); W # optional - sage.libs.gap
54
+ sage: W = CoxeterGroup(["A",3,1]); W # needs sage.libs.gap
55
55
Coxeter group over Integer Ring with Coxeter matrix:
56
56
[1 3 2 3]
57
57
[3 1 3 2]
58
58
[2 3 1 3]
59
59
[3 2 3 1]
60
60
61
- sage: W = CoxeterGroup(['H',3]); W # optional - sage.libs.gap
61
+ sage: W = CoxeterGroup(['H',3]); W # needs sage.libs.gap
62
62
Finite Coxeter group over Number Field in a with defining polynomial x^2 - 5
63
63
with a = 2.236067977499790? with Coxeter matrix:
64
64
[1 3 2]
@@ -74,24 +74,24 @@ def CoxeterGroup(data, implementation="reflection", base_ring=None, index_set=No
74
74
and Category of finite weyl groups
75
75
and Category of well generated finite irreducible complex reflection groups
76
76
77
- sage: W = CoxeterGroup(["A",2], implementation="matrix"); W # optional - sage.libs.gap
77
+ sage: W = CoxeterGroup(["A",2], implementation="matrix"); W # needs sage.libs.gap
78
78
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)
79
79
80
- sage: W = CoxeterGroup(["H",3], implementation="matrix"); W # optional - sage.libs.gap sage.rings.number_field
80
+ sage: W = CoxeterGroup(["H",3], implementation="matrix"); W # needs sage.libs.gap sage.rings.number_field
81
81
Finite Coxeter group over Number Field in a with defining polynomial x^2 - 5
82
82
with a = 2.236067977499790? with Coxeter matrix:
83
83
[1 3 2]
84
84
[3 1 5]
85
85
[2 5 1]
86
86
87
- sage: W = CoxeterGroup(["H",3], implementation="reflection"); W # optional - sage.rings.number_field
87
+ sage: W = CoxeterGroup(["H",3], implementation="reflection"); W # needs sage.rings.number_field
88
88
Finite Coxeter group over Number Field in a with defining polynomial x^2 - 5
89
89
with a = 2.236067977499790? with Coxeter matrix:
90
90
[1 3 2]
91
91
[3 1 5]
92
92
[2 5 1]
93
93
94
- sage: W = CoxeterGroup(["A",4,1], implementation="permutation") # optional - sage.libs.gap
94
+ sage: W = CoxeterGroup(["A",4,1], implementation="permutation") # needs sage.libs.gap
95
95
Traceback (most recent call last):
96
96
...
97
97
ValueError: the type must be finite
@@ -101,12 +101,12 @@ def CoxeterGroup(data, implementation="reflection", base_ring=None, index_set=No
101
101
102
102
We use the different options for the "reflection" implementation::
103
103
104
- sage: W = CoxeterGroup(["H",3], implementation="reflection", base_ring=RR); W # optional - sage.libs.gap
104
+ sage: W = CoxeterGroup(["H",3], implementation="reflection", base_ring=RR); W # needs sage.libs.gap
105
105
Finite Coxeter group over Real Field with 53 bits of precision with Coxeter matrix:
106
106
[1 3 2]
107
107
[3 1 5]
108
108
[2 5 1]
109
- sage: W = CoxeterGroup([[1,10],[10,1]], implementation="reflection", # optional - sage.symbolics
109
+ sage: W = CoxeterGroup([[1,10],[10,1]], implementation="reflection", # needs sage.symbolics
110
110
....: index_set=['a','b'], base_ring=SR); W
111
111
Finite Coxeter group over Symbolic Ring with Coxeter matrix:
112
112
[ 1 10]
0 commit comments